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1 Introduction

The purpose of these notes is to provide the theoretical and formal background for
the implementation of the constant electric field [1] and constant electric displace-
ment field [2] methods in the context of first-principles electronic structure theory, in
particular as they are implementated in the ABINIT [3] code package. The full theory
can be found in the above two references. Most of the present notes are adopted from
the supplementary material of Ref. [2].

2 Energy functionals

2.1 Units

We use Gaussian units so that D = E + 4πP, etc., where we use E to denote the
electric field. Energies like E, U , F and F̃ are energies per unit cell with units of
energy.

2.2 Energy functionals for constant field calculation

Internal energy U is introduced for constant displacement field calculation [2]:

U(D, v) = EKS(v) +
Ω

8π
[D − 4πP(v)]2 . (1)

U(D, v) depends directly on an external vector parameter D, and indirectly on the
internal (ionic and electronic) coordinates v through the Kohn-Sham energy EKS and
the Berry-phase polarization P [4].

The electric enthalpy F is introduced for constant E calculation: [1]

F(E , v) = EKS(v) − Ω E · P(v) . (2)

However, according to Ref. [2], F̃ is a more natural functional to be used in constant
E calculation:

F̃ = U −
Ω

4π
E · D = F −

Ω

8π
E2 . (3)

(Since F and F̃ only differ by a function of E , both of them yield the same equilibrium
state at fixed E.)
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3 Strains and strain derivatives

3.1 Introducing reduced field variables

For treating variable strain, it is strongly advantageous to change to internal variables.
To define internal variables for the fields, we let aj be the lattice vectors, and gij =
ai · aj be the metric. We also let bi be dual vectors defined as ai · bj = δij , in which
the conventional factor of 2π is not included, so that bi · bj = (g−1)ij . There are
now two choices of reduced variables. Referencing to the reciprocal vectors, we get
reduced variables

pi = Ωbi ·P ⇐⇒ P =
1

Ω

∑

i

pi ai , (4)

εi =
Ω

4π
bi · E ⇐⇒ E =

4π

Ω

∑

i

εi ai , (5)

di =
Ω

4π
bi · D ⇐⇒ D =

4π

Ω

∑

i

di ai . (6)

where the inverse relations are given to the right. The relation D = E +4πP becomes

di = εi + pi. (7)

The reduced variables di, εi, and pi have units of charge, and are related to the free
charge, total charge, and bound charge, respectively, found on a surface of orientation
b̂i if the fields vanish in the vacuum. Note that, aside from a factor of e/2π, the pi

are nothing other than the Berry phases φi as given, e.g., in Eq. (23) of Ref. [5].
The other choice is to refer to the real-space lattice vectors, i.e.,

p̄i = 4π ai · P ⇐⇒ P =
1

4π

∑

i

p̄i bi , (8)

ε̄i = ai · E ⇐⇒ E =
∑

i

ε̄i bi , (9)

d̄i = ai · D ⇐⇒ D =
∑

i

d̄i bi . (10)

The relation D = E + 4πP becomes

d̄i = ε̄i + p̄i. (11)

The reduced variables p̄i, ε̄i, and d̄i have units of electric potential (energy/charge),
and are related to the potential drop across the unit cell in direction âi arising from
the displacement field, the total field, and the depolarization field, respectively. They
are related to the unbarred quantities by

p̄i =
4π

Ω
gij pj , ε̄i =

4π

Ω
gij εj , d̄i =

4π

Ω
gij dj , (12)

where an implied sum notation is used.
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The reduced field variables introduced here are closely related to those discussed
in Ref. [1] (see, e.g., Eq. (5) therein) and in Sec. II.C.3 and the Appendix of of Ref. [6].
Eqs. (A4) and (A5) of Ref. [6] introduce field variables that are reminiscent of pi and
ε̄i here, but there they were defined in such a way as to coincide with the ordinary
P and E in the absence of strains or rotations. More closely related are the P

′ and
εµ variables defined in (A13) and (A14) of Ref. [6], which are identical to our pi and
ε̄i except for a factor of the charge quantum e.

3.2 Energy functionals in reduced variables

The equation analogous to Eq. (2) is

F(ε̄) = E(p) −
4π

Ω
gij εi pj = E(p) − ε̄i pi . (13)

Note that the natural variable of function F is ε̄, not ε. That is, the variable conjugate
to pi is (4π/Ω)gijεj = ε̄i. This is the reason why we recommend to use ε̄ in the
constant electric field calculation (as implemented in ABINIT). We also have

ε̄i =
dE

dpi

, pi = −
dF

dε̄
. (14)

Then Eq. (3) becomes1

F̃(ε̄) = F(ε̄) −
Ω

8π
(g−1)ij ε̄i ε̄j = E(p) − ε̄i pi −

Ω

8π
(g−1)ij ε̄i ε̄j (15)

and Eq. (1) becomes

U = E +
2π

Ω
gij εi εi = E +

1

2
ε̄i εi = E +

Ω

8π
(g−1)ij ε̄i ε̄j . (16)

We also have

di = −
dF̃

dε̄i

, ε̄i =
dU

ddi

. (17)

For the electric enthalpy function, we can imagine a large number N of crystalline
cell layers sandwiched between capacitor electrodes with a voltage V applied across
the electrodes. If the cell is strained as a result of the applied voltage or for any other
reason, the voltage drop per cell will remain V/N , corresponding to a fixed ε̄. It thus
makes sense that this is the natural variable for this kind of problem. On the other
hand, the variable ε would change with strain, and so is not an appropriate choice of
variable in this context.

On the other hand, instead of a capacitor with fixed voltage across the plates, we
can imagine a slab with fixed free charge on the surfaces. More precisely, it would be
fixed free charge per surface cell, not per unit area, under general strain deformations.
This corresponds to fixed d, and so it is natural that U(d) has natural variable d, not
d̄.

1The volume Ω was erroneously omitted in Eq.(33) of the supplementary notes of Ref. [2].
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3.3 Strain, strain derivatives, and the stress tensor

Let ηµν be the strain tensor, and define the stresses σE
µν = Ω−1dE/dηµν , σF

µν =

Ω−1dF/dηµν , σF̃
µν = Ω−1dF̃/dηµν , and σU

µν = Ω−1dU/dηµν . Then

dΩ

dηµν

= Ωδµν (18)

and

dgij

dηµν

= aiµ ajν + ajµ aiν . (19)

The Hellmann-Feynman theorem applied to the electric enthalphy is
(

dF(ε̄, η; v)

dηµν

)

ε̄

=
∂F(ε̄, η; v)

∂ηµν

+
∂F(ε̄, η; v)

∂v

dv

dηµν

(20)

but since ∂F/∂v = 0 at the equilibrium state of the internal variables {v}, the second
term vanishes. Using F(ε̄) = E(p) − ε̄i pi we find

dF(ε̄, η)

dηµν

=
∂E(p, η)

∂ηµν

− ε̄i

∂pi

∂ηµν

. (21)

But if we assume that the internal variables are atomic coordinates in lattice-vector
units and coefficients of plane-wave basis functions in a norm-conserving context, it
follows that ∂pi/∂ηµν = 0. Thus

σF

µν =
1

Ω

dF

dηµν

=
1

Ω

∂E

∂ηµν

= σE
µν (22)

which is just the stress tensor appearing in the usual KS theory. In the case of USPP
or PAW approaches, ∂pi/∂ηµν does not vanish, and augmentation terms need to be
included.

For the internal energy, we again use the Hellmann-Feynman argument to write
dU/dηµν = ∂U/∂dηµν . Now the natural variable being held fixed is d, and again p is
unchanged under a homogeneous strain if the internal variables are chosen properly,
and since di = εi + pi, this means ε is also fixed (while ε̄ is not). We choose to write
Eq. (16) as

U(η, d) = E +
2π

Ω
gij εi εj (23)

so that, using Eqs. (18) and (19),

σU
µν =

1

Ω

dU

dηµν

=
1

Ω

∂E

∂ηµν

+
2π

Ω2

[
2 aiµ ajν εi εj − δµν gij εi εi

]
(24)

or

σU
µν = σKS

µν +
1

8π

[
2 Eµ Eν − δµν E

2
]

(25)

where the second term is just the Maxwell stress tensor arising from the macroscopic

electric field. It is straightforward to show that σF̃ = σU . Thus, there are basically
two stress tensors, one (σF

µν = σE
µν) that does not include the Maxwell stress, and

another (σF̃ = σU ) that does.
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4 ABINIT implementation

In the ABINIT implementation, F̃ and U have been chosen as the energy function-
als for fixed electric field or fixed electric displacement field cases, respectively. The
corresponding fields are the reduced variables ε̄i or di, in units of a.u. Therefore, the
stress tensor includes the Maxwell stress. The ion positions and cell parameters can
be optimized either under fixed ε̄i or fixed di boundary conditions. This mode of op-
eration, in which the user inputs target reduced fields for the constrained calculation,
is the recommended one when the lattice vectors are going to be relaxed.

When the cell parameters are not going to be relaxed, it may be more convenient
to work with the unreduced field variables E or D instead; ABINIT also allows this
option, in which the unreduced target field is input directly (in a.u.).

The ABINIT implementation does also allow calculations at fixed unreduced E or
D with relaxation of the cell parameters, but this option should be used with caution.
It is important to note that the energy functionals of Eq. (13) and Eq. (16) are still
used in these cases. Thus, when working at fixed E for example, the code searches for
a value of ε̄i such that the equilibrium structure at fixed ε̄i has the unreduced field E

matching the target one. This procedure is not variational in the usual sense. During
such a run, the reported forces and stresses that are used to guide the minimization
are not, in principle, equal to the numerical derivatives of the energy functional. For
these reasons, it is recommended to choose the reduced-field options when relaxing
the cell parameters along with the internal coordinates.

Relaxed-cell calculations at fixed E and D along one dimension were implemented
first by M. Stengel in a private code package (LAUTREC) as described in Ref. [2] and
references therein. Tests of the current ABINIT implementation (which supports fixed
three-dimensional E or D) were presented in Ref. [7], showing excellent agreement
with the LAUTREC implementation.

References
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