

MND

Overlap integral

Core-level
PAW

NIOLI IOU

110301

Conclusion

Ab initio calculations of core-level XPS spectra

François Bottin

CEA, DAM, DIF, F-91297 Arpajon, (France)

5th International ABINIT Developer Workshop Han-sur-Lesse (Belgium) April 11-14, 2011

Theory
MND
Final states
Overlap

Implementation

Core-level

PAW

Method Results

Iron

Conclusions

Core-level X-ray spectroscopies

Core-level spectroscopies are used as local probe to investigate the electronic structure, but also the atomic structure, phase transitions...

Theory MND Final states Overlap integral

Implementation
Core-level
PAW
Method

Iron
Conclusion

A very long story...

- From Röntgen in 1895, and Einstein in 1905...
- ...going through Mahan, Nozières and DeDominicis at the end of the sixties (the edge singularity, the so-called "MND problem", see Ref.¹)...
- ...to the implementation of XAS² and XES³ in Abinit...
- ...and the implementation of core-level XPS in a FLAPW code⁴.

Aim: implement this latter method, able to provide a full XPS spectrum. Other methods, less demanding in computational cost, are available if we are only interested in the core-level shift.

¹K. Ohtaka and Y. Tanabe, RMP **62**, 929 (1990).

 $^{^2{\}rm S}.$ Mazevet and G. Zérah, PRL $\bf 101,$ 155001 (2008). V. Recoules and S. Mazevet, PRB $\bf 80,$ 064110 (2009).

³S.M. Vinko *et al.*, PRL **104**, 225001 (2010).

⁴M. Takahashi, J.-I. Igarashi and N. Hamada, PRB **78**, 155108 (2008). M. Takahashi and J.-I. Igarashi, PRB **81**, 035118 (2010).

Theory

Final states Overlap

Implementation

Core-level PAW

Iron

Conclusion

Theoretical background

- The MND problem
- Final states
- Overlap integral

Implementation in the ABINIT code

- How to create a core-hole?
- The PAW approach
- Methodology Flow chart
- Results
 - Application to the 3s core-level of iron
- Conclusions

Theory

Theoretical background

- The MND problem
- Final states
- Overlap integral

- - Methodology Flow chart

Application to the 3s core-level of iron

Theory MND

Final states
Overlap
integral

Core-level
PAW

Results

Iron

Conclus

The MND problem

Let us define the initial (i) and final (f) wavefunctions, Ψ^i and Ψ^f respectively, as Slater determinants:

Wave functions of the ground and final states

$$\left|\Psi^i\right> = \left|\psi^i, \Psi^i_N\right|$$

$$\left|\Psi^f\right> = \left|\psi^f, \Psi_N^f\right|$$

For an x-ray photon with energy $h\nu$, the probability to detect a photoelectron (ϵ, σ) is:

XPS intensity

$$I_{\sigma}^{XPS}(h\nu - \epsilon) = 2\pi |\langle \psi^f | \mathcal{O}_{\sigma} | \psi^i \rangle|^2 \sum_{f} |\langle \Psi_N^f | \Psi_N^i \rangle|^2 \delta(h\nu - \epsilon + E_i - E_f)$$

with \mathcal{O}_{σ} the annihilation operator.

Final states

Final states: terminology about excitations

- initial (ground) state i with no core-electron removed.
- final (ground and excited) states f with an electron removed from an inner-shell.

Some "valence excitations" can also occur in the upper shells \rightarrow satellites (shake-up processes) and we have to sum over all these final states f:

Theory
MND
Final states
Overlap
integral

Implementation
Core-level
PAW

Results

Conclus

Overlap integral: ground state of the final state

In order to compute the overlap $\langle \Psi_N^f | \Psi_N^i \rangle$, we can define⁵ an operator $\mathcal A$ such as:

Without any excitation

$$\langle \Psi^f | \Psi^i \rangle = det \mathcal{A} = \Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{vmatrix}$$

with $(\mathcal{A})_{\alpha\alpha'} = a_{\alpha\alpha'} = \langle \psi_{\alpha} | \psi_{\alpha'} \rangle$. The subscript α replaces the **k**-point, spin and band indices.

⁵K. Ohtaka and Y. Tanabe, RMP **62**, 929 (1990)

Theory
MND
Final states
Overlap
integral

Implementatio
Core-level
PAW

Results

Conclusio

Overlap integral: ground state of the final state

In order to compute the overlap $\langle \Psi_N^f | \Psi_N^i \rangle$, we can define⁵ an operator \mathcal{A} such as:

Without any excitation

Without any valence excitations, the XPS spectrum is reduced to its main peak, with Δ its intensity.

⁵K. Ohtaka and Y. Tanabe, RMP **62**, 929 (1990)

Overlap integral

Overlap integral: one excitation

For an excitation $f = (\mu; \gamma)$, from the occupied state μ to the empty one γ , the overlap becomes:

For only one excitation

$$\Delta(\mu; \gamma) = \begin{vmatrix} a_{11} & \dots & a_{1N} \\ \vdots & & \vdots \\ a_{\gamma 1} & \dots & a_{\gamma N} \\ \vdots & & \vdots \\ a_{N1} & \dots & a_{NN} \end{vmatrix}$$

- Here, we replace the μ th row by $(a_{\gamma 1}, a_{\gamma 2}, \dots, a_{\gamma N})$.
- We have to compute such a determinant for all the excitations going from an occupied state (1 among $N_{occ} = N$) to an unoccuppied one (1 among N_{unocc})
 - $\longrightarrow N_{\rm occ} \times N_{\rm unocc}$ determinants.

Overlap integral

Overlap integral: two excitations

For an excitation $f = (\mu_1, \mu_2; \gamma_1, \gamma_2)$, from the states μ_1 and μ_2 to the states γ_1 and γ_2 :

For two excitations

$$\Delta(\mu_1, \mu_2; \gamma_1, \gamma_2) = \begin{vmatrix} a_{11} & \dots & a_{1N} \\ \vdots & & \vdots \\ a_{\gamma_1 1} & \dots & a_{\gamma_1 N} \\ \vdots & & \vdots \\ a_{\gamma_2 1} & \dots & a_{\gamma_2 N} \\ \vdots & & \vdots \\ a_{N1} & \dots & a_{NN} \end{vmatrix} \rightarrow \Delta \begin{vmatrix} \frac{\Delta(\mu_1; \gamma_1)}{\Delta} & \frac{\Delta(\mu_1; \gamma_2)}{\Delta} \\ \frac{\Delta(\mu_2; \gamma_1)}{\Delta} & \frac{\Delta(\mu_2; \gamma_2)}{\Delta} \end{vmatrix}$$

... thanks to Jacobi's identity.

Theory
MND
Final states
Overlap
integral

Implementation
Core-level
PAW
Method

Results

Iron

Overlap integral: two excitations

For two excitations

• Due to the anti-symetrization of the wave functions (Slater determinants), the electrons and their excitations are indiscernible. For instance, the two permutations $f = (\mu_1, \mu_2; \gamma_1, \gamma_2)$ and $f = (\mu_2, \mu_1; \gamma_1, \gamma_2)$ are taken into account in the previous overlap integral $\Delta(\mu_1, \mu_2; \gamma_1, \gamma_2)$.

Theory
MND
Final state
Overlap
integral

Implementati
Core-level
PAW
Method

Result

Conclusions

Overlap integral: two excitations

For two excitations

- Due to the anti-symetrization of the wave functions (Slater determinants), the electrons and their excitations are indiscernible. For instance, the two permutations $f=(\mu_1,\mu_2;\gamma_1,\gamma_2)$ and $f=(\mu_2,\mu_1;\gamma_1,\gamma_2)$ are taken into account in the previous overlap integral $\Delta(\mu_1,\mu_2;\gamma_1,\gamma_2)$.
- The number of determinants to compute is: $C_{\text{occ}}^2 \times C_{\text{unocc}}^2 = \frac{N_{\text{occ}} \times (N_{\text{occ}} 1) \times N_{\text{unocc}}(N_{\text{unocc}} 1)}{2 \times 2}.$
- These excitations have to be performed for the two spin channels.

Implementation

- Implementation in the ABINIT code
 - How to create a core-hole?
 - The PAW approach
 - Methodology Flow chart
- - Application to the 3s core-level of iron

Theory

MND

Final state

Implementati
Core-level
PAW

Resul

Iron Conclus

How to create a core-hole?

Two methods are possible:

- The first one, which is currently employed:
 - Generate⁶ a pseudopotential with a core-hole (define a level occupied by (n-1) electrons rather than n).
 - Introduce this one in the calculation and consider it as an impurity (perform a convergence with respect to the size of the supercell).
 - Force the neutrality of the system and add one electron at the top of the valence band⁷.

Drawback: the spin of the electron removed during the generation process is not specified. It could be important when the screening of the core-hole by the valence electrons depends on the spin value of the electron removed.

⁶Natalie A. W. Holzwarth and Marc Torrent, see http://pwpaw.wfu.edu

⁷If you can't deal with charged systems in periodic calculations.

Theory MND Final stat Overlap

Implementation
Core-level
PAW
Mathod

Results

Conclusio

How to create a core-hole?

Two methods are possible:

- The first one, which is currently employed:
 - ② The second one, adopted in the following procedure:
 - Generate⁶ a pseudopotential with the core-levels in the valence.
 - Create the core-hole self-consistently ("on the fly") by removing the lowest state during the electronic minimization.

Bonus: we also take into account of the relaxation of the core-level, feature not included in the previous method since the core-level was frozen within the pseudopotential.

⁶Natalie A. W. Holzwarth and Marc Torrent, see http://pwpaw.wfu.edu

Theory

MND

Final states

Overlap

Implementation
Core-level
PAW
Method

Results Iron

Conclusi

PAW: background

In the PAW method⁷, the true monoelectronic wave function ψ_{α} is obtained starting from the PS (pseudo) one $\tilde{\psi}_{\alpha}$ by using a linear transformation:

PAW transformation

$$\mathcal{T} = \mathcal{I}d + \sum_{k} (\left| \phi_{k} \right\rangle - \left| \tilde{\phi}_{k} \right\rangle) \left\langle \tilde{p}_{k} \right|$$

When this transformation \mathcal{T} is applied to the PS wave function $|\tilde{\psi}_{\alpha}\rangle$, we obtain:

$$\begin{aligned} |\psi_{\alpha}\rangle &= \mathcal{T}|\tilde{\psi}_{\alpha}\rangle \\ &= |\tilde{\psi}_{\alpha}\rangle + \sum_{L}(|\phi_{k}\rangle - |\tilde{\phi}_{k}\rangle)\langle \tilde{p}_{k}|\tilde{\psi}_{\alpha}\rangle \end{aligned}$$

⁷P. E. Blöchl, PRB 50 (1994) 17953. M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze, CMS 42, 337 (2008).

PAW: background

The same transformation applied to an operator \mathcal{A} gives:

$$\begin{array}{lcl} \tilde{\mathcal{A}} & = & \mathcal{T}^{\dagger} \mathcal{A} \mathcal{T} \\ & = & \mathcal{A} + \sum_{kl} \left| \tilde{p}_k \right\rangle \left(\left\langle \phi_k | \mathcal{A} | \phi_l \right\rangle - \left\langle \tilde{\phi}_k | \mathcal{A} | \tilde{\phi}_l \right\rangle \right) \left\langle \tilde{p}_l \right| + \Delta \mathcal{A} \end{array}$$

with ΔA equals to zero for local or quasi-local operator.

PAW

PAW

PAW: expectation value and scalar product

Expectation value and scalar product

$$\begin{array}{lcl} \left\langle \tilde{\psi}_{\alpha} | \tilde{\mathcal{A}} | \tilde{\psi}_{\alpha} \right\rangle & = & \left\langle \tilde{\psi}_{\alpha} | \mathcal{A} | \tilde{\psi}_{\alpha} \right\rangle \\ & + & \sum_{kl} \left\langle \tilde{\psi}_{\alpha} | \tilde{p}_{k} \right\rangle \left(\left\langle \phi_{k} | \mathcal{A} | \phi_{l} \right\rangle - \left\langle \tilde{\phi}_{k} | \mathcal{A} | \tilde{\phi}_{l} \right\rangle \right) \left\langle \tilde{p}_{l} | \tilde{\psi}_{\alpha} \right\rangle \end{aligned}$$

- This kind of formulation is already used in large number of PAW implementations in Abinit: LDA+U, spin-orbit, exact exchange, XAS, XES... At now, for these implementations, only the second term is coded (assume that all the relevant features are included in the sphere).
- Here we choose to implement the three terms. For iron, the modification of the electronic structure outside the PAW sphere, in order to screen the core-hole, may be significant.
- In our case $\mathcal{A} = \mathcal{I}d$, since we only want to compute an overlap.

PAW

PAW: expectation value with two PAW basis set

On the atom site with the core-hole, we generally have an atomic data with a basis set ϕ_h^f different of the one used to compute the ground state ϕ_k^i . It can be demonstrated that the previous equation remain valid:

Overlap integral in PAW

$$\langle \psi_{\alpha}^f | \psi_{\alpha}^i \rangle = \langle \tilde{\psi}_{\alpha}^f | \tilde{\psi}_{\alpha}^i \rangle + \sum_{kl} \langle \tilde{\psi}_{\alpha}^f | \tilde{p}_k^f \rangle \left(\langle \phi_k^f | \phi_l^i \rangle - \langle \tilde{\phi}_k^f | \tilde{\phi}_l^i \rangle \right) \langle \tilde{p}_l^i | \tilde{\psi}_{\alpha}^i \rangle$$

- The PAW radius of the partial waves without or with core-levels, ϕ_i^i and ϕ_i^f respectively, have to be equals.
- We can compute the $\langle \phi_k^f | \phi_l^i \rangle$ and $\langle \tilde{\phi}_k^f | \tilde{\phi}_l^i \rangle$ integrals more easily (without any spline) if their meshes are identical.

Method

Methodology – Flow chart

Overlap integral

Using the kgb parallelisation^a (over spin/k-points/PWs).

- Compute the initial state and write the wave functions $|\tilde{\psi}_{\alpha}^{i}\rangle$.
- 2 Compute the ground state of the final state (with the core-hole) and store the wave functions $|\tilde{\psi}_{\alpha}^{f}\rangle$.
- 3 Read the initial state wave functions $|\tilde{\psi}_{\alpha}^{i}\rangle$ (in MPI-IO since this one could be huge – supercell calculation).

^aF. Bottin, S. Leroux, A. Knyazev and G. Zérah, CMS 42, 329 (2008).

Overlap integral in PAW

$$\langle \psi_{\alpha}^f | \psi_{\alpha}^i \rangle = \langle \tilde{\psi}_{\alpha}^f | \tilde{\psi}_{\alpha}^i \rangle + \sum_{kl} \langle \tilde{\psi}_{\alpha}^f | \tilde{p}_k^f \rangle \left(\langle \phi_k^f | \phi_l^i \rangle - \langle \tilde{\phi}_k^f | \tilde{\phi}_l^i \rangle \right) \langle \tilde{p}_l^i | \tilde{\psi}_{\alpha}^i \rangle$$

Method

Methodology – Flow chart

Overlap integral

Using the kgb parallelisation^a (over spin/k-points/PWs).

- Calculation of the PW scalar product $\langle \tilde{\psi}_{\alpha}^f | \tilde{\psi}_{\alpha}^i \rangle$.
- Calculation of associated projectors $\langle \tilde{p}_{l}^{i/f} | \tilde{\psi}_{\alpha}^{i/f} \rangle$ (ctocproj).
- Calculation of on-site terms $(\langle \phi_k^f | \phi_l^f \rangle \langle \tilde{\phi}_k^i | \tilde{\phi}_l^i \rangle)$.
- Calculation of the summation \sum_{kl} over atom for each $\alpha = (\sigma, n, \mathbf{k}).$

^aF. Bottin, S. Leroux, A. Knyazev and G. Zérah, CMS 42, 329 (2008).

Overlap integral in PAW

$$\langle \psi_{\alpha}^f | \psi_{\alpha}^i \rangle = \langle \tilde{\psi}_{\alpha}^f | \tilde{\psi}_{\alpha}^i \rangle + \sum_{kl} \langle \tilde{\psi}_{\alpha}^f | \tilde{p}_k^f \rangle \left(\langle \phi_k^f | \phi_l^i \rangle - \langle \tilde{\phi}_k^f | \tilde{\phi}_l^i \rangle \right) \langle \tilde{p}_l^i | \tilde{\psi}_{\alpha}^i \rangle$$

Method

Methodology – Flow chart

Determinants – Matrix elements – Intensity

Using the kgb parallelisation^a (over spin/ \mathbf{k} -points/combinations).

- **S** Compute the determinants $\langle \Psi^f | \Psi^i \rangle$ with 0, 1, 2... excitations.
- \bullet ... the matrix elements $|\langle \Psi^f | \Psi^i \rangle|^2 = |\langle \Psi^f_{\uparrow} | \Psi^i_{\uparrow} \rangle \langle \Psi^f_{\downarrow} | \Psi^i_{\downarrow} \rangle|^2$.
- \bigcirc ... the binding energy $E_i E_f$ using KS eigenvalues b .
- Convolute δ with a lorentzian (FWHM: Γ =1.0 eV).

^aF. Bottin, S. Leroux, A. Knyazev and G. Zérah, CMS 42, 329 (2008). ^bAt this time, we don't take into account any (GW) correction.

XPS intensity

$$I_{\sigma}^{XPS}(h\nu - \epsilon) = 2\pi |\langle \psi^f | \mathcal{O}_{\sigma} | \psi^i \rangle|^2 \sum_{f} |\langle \Psi^f | \Psi^i \rangle|^2 \delta(h\nu - \epsilon + E_i - E_f)$$

Methodology – Flow chart

- Proceed step by step. Begin by a small number of excitations (mnd_mexcit=1 or 2) then increase.
- 2 Do not use combinations with a too small overlap integral when computing the matrix elements (hard coded).
- On to consider the excitations above a cutoff energy (mnd_maxene=10 eV, more or less).

Some of these simplifications are already used in TDDFT.

System with 100 atoms, 1000 bands (occupied & unoccupied 10 eV above the Fermi level), 10 k-points and spin-polarisation: 1-2 hours for each DFT calculation (i & f) and 1-2 hours for the XPS spectrum (with 2 excitations) over 2000 processors.

Method

- Methodology Flow chart

Results

Application to the 3s core-level of iron

Results

Theory

MND

Final states

Overlap

Implementatio
Core-level
PAW
Method

Results

Conclusions

Reference calculation

Calculations^a performed using a FLAPW code.

- Iron in its bcc phase.
- Supercell with 27 atoms.

3s core-level XPS spectra of iron

• DFT calculations with a [???] MP mesh, Γ -point spectrum.

 $^a \rm M.$ Takahashi, J.-I. Igarashi and N. Hamada, PRB **78**, 155108 (2008). M. Takahashi and J.-I. Igarashi, PRB **81**, 035118 (2010).

Theory

MND

Final states

Implementation
Core-level
PAW
Method

Iron Conclusions

3s core-level XPS spectra of iron

Reference calculation

Calculations^a performed using a FLAPW code.

- No modification of the up- or down-spin channel.
- Unoccupied final states \perp ocupied initial ones.
- Neither up- nor down-excitations are possible.

 $^a \rm M.$ Takahashi, J.-I. Igarashi and N. Hamada, PRB **78**, 155108 (2008). M. Takahashi and J.-I. Igarashi, PRB **81**, 035118 (2010).

Iron

3s core-level XPS spectra of iron

Calculations a performed using a FLAPW code.

- Unitary transformation within the majority spin channel.
- Strong modifications within the minority one.
- So only down excitations would be efficient.

^aM. Takahashi, J.-I. Igarashi and N. Hamada, PRB 78, 155108 (2008). M. Takahashi and J.-I. Igarashi, PRB 81, 035118 (2010).

3s core-level XPS spectra of iron

This work

Calculations performed using Abinit in the PAW framework.

- Iron in its bcc phase.
- Supercell with 27 atoms.
- DFT calculations with a [333] MP mesh, Γ-point spectrum.

tes

integral Implementation

Core-level PAW Method

Resul

Conclusion

3s core-level XPS spectra of iron

This work

Calculations performed using ABINIT in the PAW framework.

- \bullet DFT calculations with a [333] MP mesh, $\Gamma\text{-point}$ spectrum.
- Good agreement (energy and number of excitation peaks).
- I_{\uparrow}^{XPS} does not converge wrt. the number of **k**-points.

Theory

MND

Final states

integral
Implementati
Core-level

Core-level PAW Method

Resul

Conclusion

Iron

3s core-level XPS spectra of iron

Calculations performed using Abinit in the PAW framework.

- DFT calculations with a [xxx] MP mesh, Γ -point spectrum.
- If we rescale the threshold intensity: convergence of the shape.
- But not with respect to the number of atoms.

3s core-level XPS spectra of iron

Calculations performed using Abinit in the PAW framework.

- DFT calculations with a [xxx] MP mesh, [xxx] full spectrum.
- I_{+}^{XPS} does not converge wrt. the number of atoms.
- If we rescale again, the shape is converged for $N_{at} > 27$.

27at [6x6x6] 54at [5x5x5] 64at [6x6x6 Binding energy (eV)

Iron

Iron

3s core-level XPS spectra of iron

Calculations performed using Abinit in the PAW framework.

- DFT calculations with a [xxx] MP mesh, [xxx] full spectrum.
- I_{+}^{XPS} does not converge wrt. the number of atoms.
- If we rescale again, the shape is converged for $N_{at} > 27$.

27at [6x6x6 54 or 15 y 5 y 5 intensity (arb. unit)

Binding energy (eV)

Discussion

Iron

Restrictions – Improvement

- The inclusion of a net charge during DFT calculations. First attempts show no effect on spectra.
- How to perform core-level XPS calculations with fractionnal occupations?
- How to take into account the relaxation of a level occupied after a valence excitation?

- Methodology Flow chart

Conclusions

Application to the 3s core-level of iron

Conclusions

Conclusions

Conclusions

- We implement a method to compute the core-level XPS spectra by means of PAW ab initio calculations.
- We are able to be spin-resolved and to take into account the core relaxation with valence excitations.
- Our spectra are equal to the ones obtained by Takahashi et al. but the overall intensities don't converge wrt. the number of **k**-points or atoms.

Conclusions

- Apply this method to surfaces (able to deal with 100 or 200 atoms).
- Introduce spin-orbit within the XPS calculation in order to include multiplet effects.
- Take into account the overlap between the (N-1) electrons remaining in the system, and their shake-up, within XAS, NXES, RIXS... calculations.

Aknowledgements

I would like to thank M. Torrent, F. Jollet, G. Jomard and G. Geneste for fruitful discussions.