Motivation Formalism Conclusions

SCAILD in abinit

M. Verstraete

April 2011

Outline

2 Formalism

3 Conclusions

ab initio phase diagrams...

- How to determine the stablest phase at given conditions?
- Minimize appropriate (Gibbs) Free energy
- NVT ensemble: F=U-TS
- NPT ensemble: Gibbs=F+pV
- Works in principle for any phase transition (displacive)

Motivation Formalism Conclusions

Free Energies

- Thermodynamical stability ← lowest free energy
- Entropic effects can stabilize different phases for T > 0
- Also need candidate dynamically stable phases
- Metastable states
 - enforced by symmetry or
 - "authentic"

Standard methods I

- Do Molecular Dynamics trajectory, explore phase space
 - very slow to get to ergodicity
- either spontaneously relaxes to correct phase
- or compare average energies

Standard methods II

- OK EOS suppose U(V) independent of T
- Vibrational entropy from phonons at T = 0, $V = V_0$
- Quasi-harmonic approximation take V(T) into account
- Add e⁻ entropy (usu. negligible)
- Extrapolation of F(V,T) fit polynomials in T
- e.g. Albe PRB 55 6203 (1997)

$$F^{vib} = \frac{1}{N} \sum_{i}^{3N} \frac{\hbar \omega_i}{2} + k_B T ln[1 - exp(-\frac{\hbar \omega_i}{k_B T})]$$

Standard methods III

- Calculate U(V) and phonons for two phases
- Add *F^{vib}* (T), and compare
- Thm expansion → phonons at high-T volume
- impossible with unstable phonons

Issues

- Physically ω changes with T!
- Lack of symmetry constraints
- Finite T phonons explore anharmonicity (even 1 mode)
- Coupling of (an)harmonic phonons

Self-consistent phonons

- Born-like method: Souvatzis et al. PRL 100 095901 (2008)
- Calculate phonons at T > 0 "self-consistently"
- Phonon displacements are "thermalized"
- Takes anharmonicity into account

Self-consistent phonons

Example from Souvatzis CMS 44, 888: high-T stability of BCC phases of Sc and Y

M. Verstraete | Self Consistent Phonons: SCAILD and abinit

Han/Lesse 2011

Outline

1 Motivation

2 Formalism

3 Conclusions

Formalism I

Relate forces and phonon frequencies:

$$ec{F}_{R} = -\sum_{R'} \Phi(R-R') U_{R'} \; \Rightarrow \; ec{F}_{q} = -\sum_{s} M \omega_{qs}^{2} \mathcal{A}_{qs} ec{\epsilon}_{qs}$$

FT of real space \vec{F} wrt lattice vectors beyond normal regime you pretend the well is harmonic...

Formalism II

Cartesian vs. normal modes

$$U_R = \frac{1}{\sqrt{MN}} \sum_{qs} \mathcal{Q}_{qs} \vec{\epsilon}_{qs} e^{iqR}$$

Normal modes are Boson-occupied T > 0

$$\begin{array}{lll} \langle \mathcal{Q}_{qs}^{\dagger} \mathcal{Q}_{qs} \rangle & = & \frac{\hbar}{\omega_{qs}} \left[\frac{1}{2} + n(\frac{\hbar \omega_{qs}}{k_B T}) \right] \\ \mathcal{A}_{qs} & = & \pm \sqrt{\frac{\langle \mathcal{Q}_{qs}^{\dagger} \mathcal{Q}_{qs} \rangle}{M}} \end{array}$$

Motivation Formalism Conclusions

 Relate forces to phonon frequencies, through classical displacements

$$\omega_{qs} = \left[-\frac{1}{M} \frac{\vec{\epsilon}_{qs} \cdot \vec{F}_q}{\mathcal{A}_{qs}} \right]^{1/2}$$

renormalized frequencies (in principle to all orders!):

$$\bar{\omega}_{qs}^2 = \omega_{qs}^2 \left(1 + \frac{\sqrt{M}}{2} \sum \Phi^3 \epsilon_{k_1 s_1} \epsilon_{k_2 s_2} \epsilon_{ks} \frac{\mathcal{A}_{k_1 s_1} \mathcal{A}_{k_2 s_2}}{\mathcal{A}_{ks} \omega_{ks}^2} + \dots \right)$$

Formalism IV

Cycle to "self-consistency":

• $\omega \rightarrow \text{normal mode displacements } \mathcal{A}$

$$\blacksquare \mathcal{A}
ightarrow$$
 atom displacements $ightarrow ec{F}$

•
$$\mathcal{A}$$
 and $\vec{F} \rightarrow$ new ω

Motivation Formalism Conclusions

- Hyp 1: phonon polarization vectors unchanged
- Hyp 2: no phonon lifetime effects
- Hyp 3: no thermal expansion

In practice

1 Get T=0 phonons

- 2 Use a supercell, move atoms along normal modes
- $\mathbf{3} \rightarrow \mathsf{displacements}$ for given T
- 4 DFT forces \rightarrow effective frequencies
- $_{5}$ ightarrow new free energy and normal modes
- 6 symmetrize ω
- 7 get configuration averaged ω

Tricks

- 1 Running average of frequencies \rightarrow config. avg.
- 2 Interpolation of $\bar{\omega}_{qs} \rightarrow$ better F(T)
- 3 Choice of amplitude for displacement: ± 1 (could be Gaussian)
- 4 Populate negative modes as though they were positive

Limitations

- Method inherently requires large supercells (4x4x4 usually not converged)
- 2 no direct access to 3rd or 4th order derivatives or other info
- 3 no evolution of cell or ϵ
- 4 dielectric effects in supercell (Parlinskii) are gross

scphon adaptation

- Original VASP scripts adapted to Abinit and Qespresso by Srijan Kumar Saha
- parse abinit output for forces and feed in correct atomic positions and supercell
- remaining difference due to psp (Ti without SC states)

Abinit workflow

- Run normal DFPT for q=2x2x2 MP
- 2 anaddb with "outscphon 1" to get:
- 3 xx_PCINFO, xx_PHFRQ, xx_PHVEC copied to abinit run
- 4 Supercell equivalent to phonon q-grid
- Implemented in ABINIT as MD, but excluded from Guillermo's library (77_ddb dependencies)

variables		
ionmov 30	nsym 1	acell *= 2
scphon_temp 300 K	scphon_supercell	2 2 2

Ye goode aulde code

- Still testing after all these years
 - Low T limit incorrect, bug left somewhere
- 2x2x2 supercell of Ti
- order of magnitude fine, but some tricks missing
- scphon_XX subroutines

Motivation Formalism Conclusions

Ye goode aulde code

- Phonons appear to be stabilized very systematically (too much?)
- Phase stability from free energy differences
- test v6 number 100, uses output for AI from v6 tests 85-88

Outline

1 Motivation

2 Formalism

3 Conclusions

Conclusions

- Heavier than standard phonon calculations of F(T)
- Still easier than coding full anharmonic effects...
- Not clear if it has precision for good Tc estimation

Perspectives

- Try on ferroelectrics or geological phases
- Abinit version should have better dipole-dipole term
- lifetimes related to variance of $\bar{\omega}$?

Discussions

Ideas

- Petros Souvatzis (Uppsala)
- Karsten Albe (Dresden)
- Olle Ericsson (Uppsala)