5th international Abinit develeoper workshop
11 October - 14 April, 2011
Han-sur-Lesse, Belgium

Implementation of the Bethe-Salpeter formalism in Abinit.

M. Giantomassi

Université Catholique de Louvain
Louvain-la-Neuve, Belgium

Overview

- A brief introduction to the Bethe-Salpeter formalism
- BSE in the electron-hole representation
- The GW+BSE code of Abinit
- Implementation details
- Future developments

Overview

- A brief introduction to the Bethe-Salpeter formalism
(1)

0

0
Implementation

- Fulure developments

MBPT and excitations

$\left(-\frac{1}{2} \Delta+v_{\mathrm{ext}}(\mathbf{r})+v_{H x c}[n](\mathbf{r})\right) \psi_{i}(\mathbf{r})=\epsilon_{i} \psi_{i}(\mathbf{r})$
Lagrangian multiplier
$\hat{h}_{0}\left(\mathbf{r}_{1}\right) \Psi_{i}\left(\mathbf{r}_{1}\right)+\int \Sigma\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \epsilon_{i}\right) \Psi_{i}\left(\mathbf{r}_{2}\right) \mathrm{d} \mathbf{r}_{2}=\epsilon_{i} \Psi_{i}\left(\mathbf{r}_{1}\right)$.
Pole of the Green
function
Charged excitation energies are well described within the GW approximation for the self-energy

Phys. Rev. Lett. 96, 226402 (2006)

GW gaps are in much better agreement with experiments

Absorption spectra are directly connected to the many-body irreducible polarizability $\tilde{\chi}$

$$
\epsilon_{\mathbf{G}_{1} \mathbf{G}_{2}}(\mathbf{q} ; \omega)=\delta_{\mathbf{G}_{1} \mathbf{G}_{2}}-v\left(\mathbf{q}+\mathbf{G}_{1}\right) \tilde{\chi}_{\mathbf{G}_{1} \mathbf{G}_{2}}(\mathbf{q} ; \omega),
$$

$$
\epsilon_{M}^{\mathrm{LF}}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \frac{1}{\epsilon_{00}^{-1}(\mathbf{q}, \omega)}
$$

Local field effects included

Neutral excitation energies are the poles of the irreducible polarizability

Ab-initio absorption spectra

RPA polarizabilites:

$$
\begin{aligned}
& \chi^{\mathrm{KS}}(12)=-i G^{\mathrm{KS}}(12) G^{\mathrm{KS}}(21) \\
& \chi^{\mathrm{GW}}(12)=-i G^{\mathrm{GW}}(12) G^{\mathrm{GW}}(21)
\end{aligned}
$$

- RPA with GW corrections leads to a blue-shifted spectrum

The first peak is missing. Important phenomena are not captured by the RPA!

The exact many-body polarizability

$$
\tilde{\chi}(12)=-i G(13) \Gamma(34 ; 2) G(41)
$$

Vertex corrections are needed to describe the phenomena involved in neutral excitations

Hedin's pentagon and BSE
 Phys. Rev. 139, A796-A823 (1965)

Full set of equations

The GW approximation

Beyond GW: the second iteration of the pentagon

$$
\Sigma_{\mathrm{GW}}(12)=i G(12) W(12) \Longrightarrow \frac{\delta \Sigma_{G W}(12)}{\delta G(34)}=i \delta(13) \delta(24) W(12)+i G \frac{\delta W}{\delta G}
$$

Using $\Gamma=1+\frac{\delta \Sigma}{\delta G} G G \Gamma$ one obtains an equation for Γ and a new approximation for $\tilde{\chi}$

BSE in a nutshell

The BSE must be formulated in terms of the four-point functions $L\left(11^{\prime}, 22^{\prime}\right)$ and $L^{0}\left(11^{\prime}, 22^{\prime}\right)$

$$
\tilde{\chi}(12)=L(11,22) \quad \chi^{0}(12)=L^{0}(11,22)
$$

Integral equation for L :

$$
L=L^{0}+L^{0} K L \Longrightarrow L=\left[1-L^{0} K\right]^{-1} L^{0}
$$

Local field effects are included by using the modified kernel

$$
K(1234)=\delta(12) \delta(34) \bar{v}(13)-\delta(13) \delta(24) W(12)
$$

with the modified Coulomb interaction $\left\{\begin{array}{l}\bar{v}(\mathbf{q})=v(\mathbf{q}) \text { if } \mathbf{q} \neq 0 \\ \bar{v}(\mathbf{q}=0)=0\end{array}\right.$

The inversion of $\epsilon_{\mathbf{G}_{1} \mathbf{G}_{2}}$ is thus avoided!

Overview

- A brief introduction to the Bethe-Salpeter formalism
- BSE in the electron-hole representation
- The GW+BSE code of Abinit
- Details on the implementation
- Future developments

BSE in the e-h basis set
 Phys. Rev. B 62, 8, 4927 (2000)

$$
L=\left[1-L^{0} K\right]^{-1} L^{0}
$$

1. Select a finite basis set thus discretizing the equation
2. Solve the problem with matrix algebra
1) Kohn-Sham states are used to expand the four-point functions

$$
F(1234)=\sum_{\substack{\left(n_{1} n_{2}\right) \\\left(n_{3} n_{4}\right)}} F_{\left(n_{1} n_{2}\right)\left(n_{3} n_{4}\right)} \psi_{n_{1}}^{\dagger}(1) \psi_{n_{2}}(2) \psi_{n_{3}}(3) \psi_{n_{4}}^{\dagger}(4) \quad n=(b, \mathbf{k}, \sigma)
$$

L^{0} is diagonal in the KS basis set $L_{\left(n_{1} n_{2}\right)\left(n_{3} n_{4}\right)}^{0}(\omega)=\frac{\left(f_{n_{2}}-f_{n_{1}}\right)}{\left(\epsilon_{n_{2}}-\epsilon_{n_{1}}-\omega\right)} \delta_{n_{1} n_{3}} \delta_{n_{2} n_{4}}$
2) After some algebra one obtains:

$$
L_{\left(n_{1} n_{2}\right)\left(n_{3} n_{4}\right)}(\omega)=[H-\omega]_{\left(n_{1} n_{2}\right)\left(n_{3} n_{4}\right)}^{-1}\left(f_{n_{4}}-f_{n_{3}}\right)
$$

We have assumes a static W and an energy gap

$$
\left(n_{1}, n_{2}\right) \Rightarrow\left\{\begin{array}{l}
(c, v, \mathbf{k}, \sigma) \\
(v, c, \mathbf{k}, \sigma)
\end{array}\right.
$$

Spectra from the BSE

Local field effects are included

$$
\epsilon_{M}(\omega)=1-\lim _{\mathbf{q} \rightarrow 0} v(\mathbf{q}) \tilde{\chi}_{00}(\mathbf{q}, \omega)
$$

Using the matrix notation in the e-h basis set

$$
L=[H-\omega]^{-1} F
$$

$$
F=\left(\begin{array}{c|cc}
& \left|v^{\prime} c^{\prime}\right\rangle & \left|c^{\prime} v^{\prime}\right\rangle \\
\hline\langle v c| & 1 & 0 \\
\langle c v| & 0 & -1
\end{array}\right)
$$

and using $\tilde{\chi}(12)=L(11,22)$
the macroscopic dielectric function can be expressed as:

$$
\begin{gathered}
\epsilon_{M}(\omega)=1-\lim _{\mathbf{q} \rightarrow 0} v(\mathbf{q})\langle P(\mathbf{q})|[H-\omega]^{-1} F|P(\mathbf{q})\rangle \\
P(\mathbf{q})_{n_{1} n_{2}}=\left\langle n_{2}\right| e^{i \mathbf{q} \cdot \mathbf{r}}\left|n_{1}\right\rangle=\delta_{n_{1} n_{2}}+i \mathbf{q} \cdot\left\langle n_{2}\right| \mathbf{r}\left|n_{1}\right\rangle+O\left(q^{2}\right)
\end{gathered}
$$

Selection rules for the dipole: 1. spin
2. irreducible representations

The BS Hamiltonian
 Phys. Rev. B 62, 4927-4944 (2000)

In spin-unpolarized systems only singlet states contribute to the optical properties

$$
\begin{gathered}
\mathrm{nsppol}=1 \\
\bar{v}-W \rightarrow 2 \bar{v}-W
\end{gathered}
$$

$$
\begin{array}{ll}
R=R^{\dagger} & \text { Resonant block } \\
C=C^{t} & \text { Coupling block } \\
H \neq H^{\dagger} & \text { due to } C
\end{array}
$$

R is diagonal dominant:
Transition energies
on the diagonal

$$
R_{(v c)\left(v^{\prime} c^{\prime}\right)}=\left(\epsilon_{c}-\epsilon_{v}\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}}+K_{(v c)\left(v^{\prime} c^{\prime}\right)}
$$

In extended systems, C is smaller than R

$$
C_{(v c)\left(c^{\prime} v^{\prime}\right)}=K_{(v c)\left(c^{\prime} v^{\prime}\right)}
$$

Tamm-Dancoff approximation (TDA) neglects

$$
H^{\mathrm{TDA}}=\left(\begin{array}{c|cc}
& \left|v^{\prime} c^{\prime}\right\rangle & \left|c^{\prime} v^{\prime}\right\rangle \\
\hline\langle v c| & R & 0 \\
\langle c v| & 0 & -R^{*}
\end{array}\right)
$$

Spin structure of the BSE
 Phys. Rev. B 77, 184408 (2008)

$P(\mathbf{q})_{n_{1} n_{2}} \approx_{\mathbf{q} \rightarrow 0} \delta_{n_{1} n_{2}}+i \mathbf{q} \cdot\left\langle n_{2}\right| \mathbf{r}\left|n_{1}\right\rangle$
Only spin-preserving transitions
(violet region) contribute to $\epsilon_{M}(\omega)$
$H=\left(\begin{array}{c|c|c|c|c} & |\uparrow \uparrow\rangle & |\downarrow \downarrow\rangle & |\uparrow \downarrow\rangle & |\downarrow \uparrow\rangle \\ \hline\langle\uparrow \uparrow| & T-W+\bar{v} & \bar{v} & 0 & 0 \\ \langle\downarrow \downarrow| & \bar{v} & T-W+\bar{v} & 0 & 0 \\ \hline\langle\uparrow \downarrow| & 0 & 0 & T-W & \\ \langle\downarrow \uparrow| & 0 & 0 & 0 & T-W\end{array}\right)$

The resonant block now consists of four spin-dependent blocks:

$$
R=\left(\begin{array}{c|cc}
& \left|v^{\prime} c^{\prime} \uparrow\right\rangle & \left|v^{\prime} c^{\prime} \downarrow\right\rangle \\
\hline\langle v c \uparrow| & (T-W+\bar{v})^{\uparrow \uparrow} & \bar{v}^{\uparrow \downarrow} \\
\langle v c \downarrow| & \bar{v}^{\uparrow \uparrow} & (T-W+\bar{v})^{\Downarrow}
\end{array}\right)
$$

Does it work?

Rev. Mod. Phys. 74, 601-659 (2002)

Silicon absorption spectrum

Overview

- A brief introduction to the Bethe-Salpeter formalism
- BSE in the electron-hole representation
(The GW+BSE code of Abinit
- Details of the implementation
- Future developments

GW+BSE flowchart

- Files are used to connect the different steps
- Different MPI algorithms optimized for the different run-level
- Fortran-IO or MPI-IO for reading and writing
- Big arrays are MPI-distributed with the exception of W
- Matrix-vector operations are done in parallel using a column-wise decomposition
- In-core and out-of-core solution for W
- The first NC implementation of the BSE code was based on routines from the EXC code. Many thanks to the EXC developers for sharing their code

BSE with plane waves

Exchange term

$$
\bar{v}_{(v c \mathbf{k})\left(v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right)}=\frac{1}{V} \sum_{\mathbf{G} \neq 0} \bar{v}(\mathbf{G})\langle c \mathbf{k}| e^{i \mathbf{G} \cdot \mathbf{r}}|v \mathbf{k}\rangle\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i \mathbf{G} \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle
$$

bs_exchange_term $=0$ to exclude this term (no local field effects)

Coulomb term

$$
W_{(v c \mathbf{k})\left(v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right)}=\frac{1}{V} \sum_{\mathbf{G}_{1} \mathbf{G}_{2}} W_{\mathbf{G}_{1} \mathbf{G}_{2}}^{0}\left(\mathbf{k}^{\prime}-\mathbf{k}\right)\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{i\left(\mathbf{q}+\mathbf{G}_{1}\right) \cdot \mathbf{r}}|v \mathbf{k}\rangle\langle c \mathbf{k}| e^{-i\left(\mathbf{q}+\mathbf{G}_{2}\right) \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle
$$

The most CPU demanding term

Oscillator matrix elements

$$
\left\langle\mathbf{k}-\mathbf{q}, b_{1}\right| e^{-i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}\left|\mathbf{k}, b_{2}\right\rangle=\hat{\mathcal{F}}\left[u_{\overline{\mathbf{k}-\mathbf{q}} b_{1}} u_{\mathbf{k} b_{2}}^{\dagger}\right]\left(\mathbf{G}-\mathbf{G}_{0}\right)
$$

$$
\mathbf{k}-\mathbf{q}=\overline{\mathbf{k}-\mathbf{q}}+\mathbf{G}_{0}, \quad \overline{\mathbf{k}-\mathbf{q}} \in B Z
$$

fftgw to control the aliasing due to the convolution
Zero padded FFT leads to a significant speed-up

PAW oscillator matrix elements

$$
\begin{aligned}
\left\langle\Psi_{b_{1} \mathbf{k}-\mathbf{q}}\right| e^{-i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}\left|\Psi_{b_{2} \mathbf{k}}\right\rangle= & \mathrm{PW}+\sum_{i j}\left\langle\tilde{\Psi}_{b_{1} \mathbf{k}-\mathbf{q}} \mid \tilde{p}_{i}\right\rangle\left\langle\tilde{p}_{j} \mid \tilde{\Psi}_{b_{2} \mathbf{k}}\right\rangle \times \\
& e^{-i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{R}_{i}}\left[\left\langle\phi_{i}\right| e^{-i(\mathbf{q}+\mathbf{G}) \cdot\left(\mathbf{r}-\mathbf{R}_{i}\right)}\left|\phi_{j}\right\rangle-\left\langle\tilde{\phi}_{i}\right| e^{-i(\mathbf{q}+\mathbf{G}) \cdot\left(\mathbf{r}-\mathbf{R}_{i}\right)}\left|\tilde{\phi}_{j}\right\rangle\right]
\end{aligned}
$$

The PAW form factors needed for the spline are tabulated on a 1D-mesh (m_paw_pwij.F90)

$$
\int_{0}^{r_{c}^{a}} j_{l}(|\mathbf{q}+\mathbf{G}| r)\left(\phi_{n_{i} l_{i}} \phi_{n_{j} l_{j}}-\tilde{\phi}_{n_{i} l_{i}} \tilde{\phi}_{n_{j} l_{j}}\right) \mathrm{d} r
$$

PAW projections are symmetrized on-the-fly in paw_symcprj. F90

$$
\left\langle\tilde{p}_{i}^{a} \mid \tilde{\Psi}_{n \mathcal{R} \mathbf{k}}\right\rangle=e^{i \mathbf{k} \cdot \mathbf{L}} \sum_{\alpha} D_{\alpha m_{i}}^{l_{i}}\left(\mathcal{R}^{-1}\right)\left\langle\tilde{p}_{n_{i} l_{i} \alpha}^{a^{\prime}} \mid \tilde{\Psi}_{n \mathbf{k}}\right\rangle
$$

$$
\mathcal{R}^{-1}\left(\mathbf{R}^{a}-\mathbf{t}\right)=\mathbf{R}^{a^{\prime}}+\mathbf{L}
$$

BSE solvers

Three different solvers can be selected using bs_algorithm:

1. Direct diagonalization:

Lapack or ScaLapack+MPI-IO (complete or partial diago)
Eigenvectors, energies, DOS, oscillator strengths and excitonic amplitudes

- Bad scaling with the size of the matrix

2. Haydock iterative method

Very efficient, excellent MPI scalability

- Only optical spectra and an approximated DOS

3. Iterative diagonalization with the preconditioned CG method

- Direct access to binding energies, DOS, wavefunctions .
- Efficient provided that the number of eigenvectors $\ll N_{e h}$
- Coupling is not supported yet

BSE spectra with diagonalization
 Phys. Rev. Lett. 80, 4510-4513 (1998)

$L=[H-\omega]^{-1} F$
The inversion for each frequency is avoided by using the spectral decomposition of H

For a non-singular operator

$$
\begin{gathered}
H|\lambda\rangle=\epsilon_{\lambda}|\lambda\rangle \\
O_{\lambda \lambda^{\prime}}=\left\langle\lambda \mid \lambda^{\prime}\right\rangle \\
H=\sum_{\lambda \lambda^{\prime}} \epsilon_{\lambda}|\lambda\rangle O_{\lambda \lambda^{\prime}}\left\langle\lambda^{\prime}\right|
\end{gathered}
$$

TDA allows one to use standard methods (CG or direct diago)
Only the resonant block is needed for TDA calculations
The inclusion of the coupling block requires a more involved treatment...

Lanczos-Haydock algorithm

Comput. Phys. Commun. 20, 11 (1980)

$\langle P|(\omega-R)^{-1}|P\rangle$ can be calculated bypassing completely the diagonalization!

Dense Hermitian matrix

$$
R=R^{\dagger}\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right)
$$

Only simple matrix-vector multiplications are required
Only three vectors are needed to construct the Lanczos basis

First step
$b_{1}=0$
$|1\rangle=\frac{|P\rangle}{\||P\rangle \|}$
First vector of the Lanczos basis

Real symmetric tridiagonal form

$$
\left(\begin{array}{lllll}
a_{1} & b_{2} & & & \\
b_{2} & a_{2} & b_{3} & & \\
& b_{3} & * & * & \\
& & * & * & * \\
& & & * & *
\end{array}\right)
$$

Iterative solution of the BSE

$$
R^{k}=\left(\begin{array}{ccccc}
a_{1} & b_{2} & 0 & \cdots & 0 \\
b_{2} & a_{2} & b_{3} & & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & b_{k-1} & a_{k-1} & b_{k} \\
0 & \cdots & 0 & b_{k} & a_{k}
\end{array}\right)
$$

Continued fraction

$$
\langle P|(\omega-R)^{-1}|P\rangle=\frac{\|P\|^{2}}{\omega-a_{1}-\frac{b_{2}^{2}}{\omega-a_{2}-\frac{b_{3}^{2}}{\cdots}}}
$$The number of iterations required to converge is almost independent on the size of the matrix (100-200)

Easy to MPI parallelize
Terminator helps to converge the spectrum. Assuming $\alpha_{n}=\alpha_{\infty}, \beta_{n}=\beta_{\infty}$ for $n>n^{0}$

$$
t(\omega)=\frac{1}{2 \beta_{\infty}^{2}}\left\{\left(\omega-\alpha_{\infty}\right)-\sqrt{\left(\omega-\alpha_{\infty}\right)^{2}-4 \beta_{\infty}^{2}}\right\}
$$Formalism can be generalized to non-Hermitian matrices. See NanoLetters, 6, 257, (2010)Eigenvalues and eigenvectors are not accessible

Overview

- A brief introduction to the Bethe-Salpeter formalism
- BSE in the electron-hole representation
(3) The GW+BSE code of Abinit
- Implementation details
- Future developments

Wavefunction descriptor

- A single wavefunction is represented by the Fortran datatype wave_t
- wave_t contains three buffers for $u(\mathbf{G}), u(\mathbf{r}),\left\langle p_{i} \mid \tilde{\Psi}\right\rangle$
- The wavefunction descriptor, Wfd, is a container storing:
i) The array of wave_t: $\operatorname{Wfd} \% \operatorname{Wave}^{(b, k, s)}$
ii) Internal tables for performing zero-padded FFT
iii) G-vectors and form factors for basic operations in G-space
iv) Tables with the MPI distribution of the states
- The internal status can be changed at run-time (e.g. the FFT mesh)
- Loops are MPI-parallelized depending on the availability of the states

Basic Methods

(A) $u(\mathbf{G}) \Rightarrow u(\mathbf{r}) \quad$ call wfd_get_ur(Wfd, ib, ik, spin, ur)
(B) $u(\mathbf{G}) \Rightarrow\left\langle p_{i} \mid \tilde{\Psi}\right\rangle$
call wfd_get_cprj(Wfd, ib, ik, spin, Crystal, Cp)
(C) FFT1 $=>$ FFT2
call wfd_change_ngfft(Wfd, Crystal, Psps, new_ngfft)
(D) $|\Psi\rangle \Rightarrow V_{\mathrm{n}}|\Psi\rangle$
call wfd_vnlpsi(Wfd, band, ik, spin, npw, Crystal,\& Psps, Hamk, vnl_psi, opaw_psi)

Bands, k-points and spins are accessed using their global index
FFT is skipped if $u(\mathbf{r})$ is already in memory
Execution stops and dump an error file if the wave function is not available
subroutine wfd_mkrho(Wfd, Crystal, Psps, Kmesh, Bstr, ngfftf, nfftf,rhor)
! Recalculate the internal FFT tables if needed.
call wfd_change_ngfft(Wfd, Cryst, Psps, ngfftf)
! Distribute the states according to their availability.
Iter_bks = wfd_iterator_bks(Wfd, bks_mask=ABS(occ)>=tol8)
! Summing over (b, k, s).
do spin=1, nsppol
do $i k=1$, nkibz
do ib_iter=1,iter_len(Iter_bks,ik,spin) ib = yield(Iter_bks,ib_iter,ik,spin) ! Retrieve my band index. call wfd_get_ur(Wfd,ib,ik,spin,ur) $u(\mathbf{G}) \Rightarrow u(\mathbf{r})$ do $i r=1, n f f t f$! Accumulate my density. rhor(ir,spin) $=$ rhor(ir,spin) + \&
\& occ(ib,ik,spin)*CONJG(ur(ir))*ur(ir)*wt(ik) end do
end do
end do
end do
! Gather the total rhor.
call xsum_mpi(rhor,Wfd\%comm,ierr)

$$
\begin{aligned}
& \text { MPI parallelized! } \\
& n(\mathbf{r})=\sum_{n \mathbf{k} \sigma}^{\text {IBZ }} f_{n \mathbf{k} \sigma}\left|\Psi_{n \mathbf{k} \sigma}\right|^{2}
\end{aligned}
$$

Pros and Cons

- Flexible, easy to use and to extend
- Support different levels of memory distribution
- Loops are MPI-parallelized automatically

States can be replicated among the nodes

- Useless states can be deallocated during the run if needed

Different instances of the same object

Too flexible!

- Bands are not contiguous in memory, workspace arrays might be needed for particular algorithms
- The internal buffers must be declared as pointers (F90 limitation)

Overview

- A brief introduction to the Bethe-Salpeter formalism
- BSE in the electron-hole representation
(3) The GW+BSE code of Abinit
- Implementation details
- Future developments

Future Developments

- Inhomogeneous k-meshes
- Better control of memory
- Interpolation schemes in k-space
- Temperature effects due to e-ph coupling
- Non-collinear magnetism and spin orbit
- Beyond static W: dynamical BSE
- Generalization to finite momentum transfer

