The effective-energy technique: GW calculations without summing over empty states

Arjan Berger

Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau, France European Theoretical Spectroscopy Facility (ETSF)

ABINIT Workshop, 12 April 2011, Han-sur-Lesse

Outline

- Introduction to GW
- Problem: Summation over empty states (screening + self-energy).
- EET: Use one effective energy for all empty states.
- ▶ Results: *GW*, BSE and TDDFT
- Conclusions and Outlook

Many-body perturbation theory:

Many-body effects contained in self-energy Σ .

Expansion in v_c:

$$\Sigma^{HF} = v_H + iGv_c$$

Many-body perturbation theory:

Many-body effects contained in self-energy Σ .

Expansion in v_c :

 $\Sigma^{HF} = v_H + i G v_c$

Expansion in $W = \epsilon^{-1} v_c$:

$$\Sigma^{GW} = v_H + iGW$$

Many-electron systems: electrons are screened by their Coulomb holes.

GW in practice: G^0W^0

Similarity of GW and Kohn-Sham Hamiltonians:

$$\hat{H}^{GW} = -\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + \sum_{xc}^{GW}(\mathbf{r}, \mathbf{r}', \omega)$$
$$\hat{H}^{KS} = -\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})$$

GW in practice: G^0W^0

Similarity of GW and Kohn-Sham Hamiltonians:

$$\hat{H}^{GW} = -\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + \sum_{xc}^{GW}(\mathbf{r}, \mathbf{r}', \omega)$$
$$\hat{H}^{KS} = -\frac{\nabla^2}{2} + v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})$$

First-order perturbation theory:

$$\epsilon_n^{GW} = \epsilon_n^{KS} + \langle n | \Sigma_{xc}^{GW}(\epsilon_n^{GW}) - v_{xc} | n \rangle$$

Taylor expansion around ϵ_n^{KS} up to first order:

$$\epsilon_n^{GW} = \epsilon_n^{KS} + Z \langle n | \Sigma_{xc}^{GW}(\epsilon_n^{KS}) - v_{xc} | n \rangle \qquad \qquad Z = \frac{1}{1 - \frac{\partial \langle n | \Sigma_{xc}^{GW}(\omega) | n \rangle}{\partial \omega} \Big|_{\omega = \epsilon_n^{KS}}}$$

1

We need (diagonal) matrix elements of the self-energy

$G^0 W^0$ results

 $G^0 W^0$: Accurate quasi-particle energies of solids

M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL 96, 226402 (2006).

- $G^0 W^0$ is computationally demanding.
- Large number of empty states in SOS expressions for Σ_{xc} and χ^0 .

Σ^{GW} matrix elements

Standard calculation: Sum-over-states (SOS)

$$\langle n|\Sigma_{x}(\omega)|n
angle = -\sum_{\mathbf{q},\mathbf{G}}\sum_{v}^{occ}\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|v
angle\langle v|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n
anglerac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}$$

$$\begin{split} \langle n|\Sigma_{c}^{GW}(\omega)|n\rangle &= \sum_{\mathbf{q},\mathbf{G},\mathbf{G}'}\sum_{j}W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q})\sum_{v}^{occ}\frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|v\rangle\langle v|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega+\omega_{j}-\epsilon_{v}} \\ &+\sum_{\mathbf{q},\mathbf{G},\mathbf{G}'}\sum_{j}W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q})\sum_{c}^{empty}\frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} \end{split}$$

$\Sigma^{\textit{GW}}$ matrix elements

Standard calculation: Sum-over-states (SOS)

$$\langle n|\Sigma_{x}(\omega)|n
angle = -\sum_{\mathbf{q},\mathbf{G}}\sum_{v}^{occ} \langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|v
angle \langle v|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n
angle rac{4\pi}{|\mathbf{q}+\mathbf{G}|^{2}}$$

$$\begin{split} \langle n|\Sigma_{c}^{GW}(\omega)|n\rangle &= \sum_{\mathbf{q},\mathbf{G},\mathbf{G}'}\sum_{j}W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q})\sum_{v}^{occ}\frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|v\rangle\langle v|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega+\omega_{j}-\epsilon_{v}} \\ &+\sum_{\mathbf{q},\mathbf{G},\mathbf{G}'}\sum_{j}W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q})\sum_{c}^{empty}\frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} \end{split}$$

Standard calculation of χ^0 : SOS

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{v}^{occ} \sum_{c}^{empty} \frac{\langle v|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|v\rangle}{\omega - (\epsilon_{c} - \epsilon_{v}) + i\eta} + A.R.$$

Standard calculation of χ^0 : SOS

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{v}^{occ} \sum_{c}^{empty} \frac{\langle v|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|v\rangle}{\omega - (\epsilon_{c} - \epsilon_{v}) + i\eta} + A.R.$$

Advantages:

- Systematic and controllable
- Easy to implement

Disadvantages:

- Huge summation over empty states
- Slow (scaling= $N_c N_v N_G^2$)

Standard calculation of χ^0 : SOS

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{v}^{occ} \sum_{c}^{empty} \frac{\langle v|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|v\rangle}{\omega - (\epsilon_{c} - \epsilon_{v}) + i\eta} + A.R.$$

Advantages:

- Systematic and controllable
- Easy to implement

Aim:

- Keep advantages of SOS
- Get rid of disadvantages: occupied states only

Disadvantages:

- Huge summation over empty states
- Slow (scaling= $N_c N_v N_G^2$)

Getting rid of the empty states

Other approaches with less or no empty states:

COHSEX:	L. Hedin, PR A796 (1965)
Extrapolar method:	F. Bruneval and X. Gonze, PRB 78, 085125 (2008)
Sternheimer equation:	L. Reining <i>et al.</i> , PRB 56, R4302 (1997) P. Umari <i>et al.</i> , PRB 81 115104 (2010) F. Giustino <i>et al.</i> , PRB 81 115105 (2010)
Improved COHSEX:	W. Kang and M. Hybertsen, PRB 82, 195108 (2010)

Getting rid of the empty states

Other approaches with less or no empty states:

COHSEX:	L. Hedin, PR A796 (1965)
Extrapolar method:	F. Bruneval and X. Gonze, PRB 78, 085125 (2008)
Sternheimer equation:	L. Reining <i>et al.</i> , PRB 56, R4302 (1997) P. Umari <i>et al.</i> , PRB 81 115104 (2010) F. Giustino <i>et al.</i> , PRB 81 115105 (2010)
Improved COHSEX:	W. Kang and M. Hybertsen, PRB 82, 195108 (2010)

This talk: a simple and general method to get rid of all empty states.

Getting rid of the empty states

Other approaches with less or no empty states:

COHSEX:	L. Hedin, PR A796 (1965)
Extrapolar method:	F. Bruneval and X. Gonze, PRB 78, 085125 (2008)
Sternheimer equation:	L. Reining <i>et al.</i> , PRB 56, R4302 (1997) P. Umari <i>et al.</i> , PRB 81 115104 (2010) F. Giustino <i>et al.</i> , PRB 81 115105 (2010)
Improved COHSEX:	W. Kang and M. Hybertsen, PRB 82, 195108 (2010)

This talk: a simple and general method to get rid of all empty states.

Extrapolar method: Reducing the number of empty states

Standard approach:

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \sum_{c=N_{v}+1}^{N} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} + \sum_{c=N+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}}$$

Extrapolar method: Reducing the number of empty states

Standard approach:

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \sum_{c=N_{v}+1}^{N} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} + \sum_{c=N+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}}$$

Extrapolar method [F. Bruneval and X. Gonze, PRB 78, 085125 (2008)]:

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \sum_{c=N_{v}+1}^{M} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} + \sum_{c=M+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\overline{\epsilon}}$$

Closure relation: $\sum_{c=M+1}^{\infty} |c\rangle \langle c| = 1 - \sum_{i=1}^{M} |i\rangle \langle i|$

Reduction of number of empty states: M < N

Extrapolar method: Reducing the number of empty states

Standard approach:

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \sum_{c=N_{v}+1}^{N} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} + \sum_{c=N+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}}$$

Extrapolar method [F. Bruneval and X. Gonze, PRB 78, 085125 (2008)]:

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \sum_{c=N_{v}+1}^{M} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} + \sum_{c=M+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\overline{\epsilon}}$$

Closure relation: $\sum_{c=M+1}^{\infty} |c\rangle \langle c| = 1 - \sum_{i=1}^{M} |i\rangle \langle i|$

Reduction of number of empty states: M < N

Effective Energy Technique: Generalization of $\bar{\epsilon} \longrightarrow M = N_{\nu}$

EET: Σ_{GW} with sum over occupied states only

There exists an effective energy $\delta_{nj}(\mathbf{q}, \mathbf{G}, \mathbf{G}', \omega)$ such that

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}\left(\sum_{c=N_{v}+1}^{\infty}|c\rangle\langle c|\right)e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\delta_{nj}(\mathbf{q},\mathbf{G},\mathbf{G}',\omega)}$$

Closure relation: $\sum_{c=N_v+1}^{\infty} |c\rangle \langle c| = 1 - \sum_{v}^{occ} |v\rangle \langle v|$

EET: Σ_{GW} with sum over occupied states only

There exists an effective energy $\delta_{nj}(\mathbf{q}, \mathbf{G}, \mathbf{G}', \omega)$ such that

$$\sum_{\boldsymbol{c}=\boldsymbol{N_{v}+1}}^{\infty} \frac{\langle \boldsymbol{n}|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|\boldsymbol{c}\rangle\langle\boldsymbol{c}|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|\boldsymbol{n}\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \frac{\langle \boldsymbol{n}|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}\left(\sum_{\boldsymbol{c}=\boldsymbol{N_{v}+1}}^{\infty}|\boldsymbol{c}\rangle\langle\boldsymbol{c}|\right)e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|\boldsymbol{n}\rangle}{\omega-\omega_{j}-\delta_{nj}(\mathbf{q},\mathbf{G},\mathbf{G}',\omega)}$$

Closure relation: $\sum_{c=N_{\nu}+1}^{\infty} |c\rangle \langle c| = 1 - \sum_{\nu}^{occ} |\nu\rangle \langle \nu|$

AB, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)

Getting δ

Starting from the definition:

$$S \equiv \sum_{c}^{empty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle}{\omega - \omega_j - \epsilon_c} = \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}\left(\sum_{c}^{empty}|c\rangle\langle c|\right)e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle}{\omega - \omega_j - \delta}$$

Getting δ

Starting from the definition:

$$S \equiv \sum_{c}^{empty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle}{\omega - \omega_j - \epsilon_c} = \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}\left(\sum_{c}^{empty}|c\rangle\langle c|\right)e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle}{\omega - \omega_j - \delta}$$

Rearranging:

$$\delta = \epsilon_n + \sum_{c}^{empty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle(\epsilon_c - \epsilon_n)}{\omega - \omega_j - \epsilon_c}/S$$

The ϵ_i are eigenvalues of \hat{H} with eigenstates $|i\rangle$

Getting δ

Starting from the definition:

$$S \equiv \sum_{c}^{\frac{empty}{c}} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle}{\omega - \omega_{j} - \epsilon_{c}} = \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}\left(\sum_{c}^{empty}|c\rangle\langle c|\right)e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle}{\omega - \omega_{j} - \delta}$$

Rearranging:

$$\delta = \epsilon_n + \sum_{c}^{empty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}'}|n\rangle(\epsilon_c - \epsilon_n)}{\omega - \omega_j - \epsilon_c}/S$$

The ϵ_i are eigenvalues of \hat{H} with eigenstates |i
angle

$$\delta = \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \sum_{\mathbf{c}} \frac{\langle n|e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}}|\mathbf{c}\rangle \langle \mathbf{c}|e^{-i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}'}[i\nabla]|n\rangle \cdot (\mathbf{q} + \mathbf{G})}{[\omega - \omega_j - \epsilon_c]} / S$$

A hierarchy of approximations for δ_{ni}

This scheme leads to simple approximations for $\delta_{nj}(\omega)$ (**G** = **G**'):

$$\begin{split} \delta_n^{(0)} &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} \\ \delta_n^{(1)} &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}} \\ \delta_{nj}^{(2)}(\omega) &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}} \frac{\omega - \omega_j - \left[\epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}}\right]}{\omega - \omega_j - \left[\epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho j}}\right]} \end{split}$$

A hierarchy of approximations for δ_{ni}

This scheme leads to simple approximations for $\delta_{nj}(\omega)$ (**G** = **G**'):

$$\begin{split} \delta_n^{(0)} &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} \\ \delta_n^{(1)} &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}} \\ \delta_{nj}^{(2)}(\omega) &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}} \frac{\omega - \omega_j - \left[\epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}}\right]}{\omega - \omega_j - \left[\epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{j j}}{f_n^{\rho j}}\right]} \end{split}$$

-The $f_n^{\rho\rho}$, $f_n^{\rho j}$, $f_n^{j j}$, \cdots are simple with sums over occupied states only. $f_n^{\rho j} = \left[\langle n | i \nabla | n \rangle - \sum_{\mathbf{v}}^{\mathsf{occ}} \langle n | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | \mathbf{v} \rangle \langle \mathbf{v} | e^{-i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}'} [i \nabla] | n \rangle \right] \cdot (\mathbf{q} + \mathbf{G})$

-From $\delta_n^{(1)}$ onwards exact for the homogeneous electron gas. - $\delta_{ni}^{(2)}(\omega)$ simple but nontrivial due to frequency dependence.

AB, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)

We can apply a similar approach to the polarizability

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{v}^{occ} \sum_{c}^{empty} \frac{\langle v | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | c \rangle \langle c | e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} | v \rangle}{\omega - (\epsilon_{c} - \epsilon_{v}) + i\eta} + A.R.$$

This can be rewritten as:

$$\chi^{0}_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \sum_{\mathbf{v}} \frac{\langle \mathbf{v} | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} \left(\sum_{c}^{empty} | c \rangle \langle c | \right) e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} | \mathbf{v} \rangle}{\omega - \left(\delta'_{\mathbf{v}}(\mathbf{q},\mathbf{G},\mathbf{G}',\omega) - \epsilon_{\mathbf{v}} \right) + i\eta} + A.R.$$

Scaling: N_{at}^4 + small prefactor (gain of N_c/N_v) or $N_{at}^3 \log N_{at}$ + larger prefactor.

$G^0 W^0$ Self-energy: Silicon

The real part of $\langle n | \Sigma_c(\omega) | n \rangle$ at Γ calculated for the highest occupied band around $\epsilon_n^{LDA} = 0$ using a plasmon-pole model for ϵ^{-1} .

Black: SOS; Red: EET: $\delta'^{(2)} + \delta^{(2)}$; Blue: EET: $\delta'^{(4)} + \delta^{(4)}$; Violet: COHSEX

AB, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)

Band Structure of Solid Argon: $G^0 W^0$

Black: SOS; Red: EET; Blue: LDA

Band gaps

 $G^0 W^0$ band gaps:

	LDA	G^0W^0	$G^0 W^0$	Experiment
		(SOS)	(EET)	
Silicon (E_g)	0.52	1.20	1.19	1.17
Silicon $(\Gamma^{v} - \Gamma^{c})$	2.56	3.23	3.22	3.40
Solid Argon (E_g)	7.53	12.4	12.3	14.2
Argon atom (HOMO-LUMO)	9.81	14.6	14.5	
SnO_2	0.91	2.88	2.94	3.6

Band gaps

 $G^0 W^0$ band gaps:

	LDA	G^0W^0	$G^0 W^0$	Experiment
		(SOS)	(EET)	
Silicon (E_g)	0.52	1.20	1.19	1.17
Silicon $(\Gamma^{v} - \Gamma^{c})$	2.56	3.23	3.22	3.40
Solid Argon (E_g)	7.53	12.4	12.3	14.2
Argon atom (HOMO-LUMO)	9.81	14.6	14.5	
SnO_2	0.91	2.88	2.94	3.6

- Good agreement between SOS approach and EET.
- $G^0 W^0$ band gaps not always in agreement with experiment.

We have to include self-consistency

Self-consistent COHSEX + G^0W^0 + EET

The COHSEX self-energy is static:

$$\begin{split} \langle n | \Sigma_{c}^{COHSEX} | n \rangle &= 2 \sum_{\mathbf{q}, \mathbf{G}, \mathbf{G}'} \sum_{j} W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q}) \sum_{v}^{occ} \frac{\langle n | e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}'} | v \rangle \langle v | e^{-i(\mathbf{q}+\mathbf{G}') \cdot \mathbf{r}'} | n \rangle}{\omega_{j}} \\ &- \sum_{\mathbf{q}, \mathbf{G}, \mathbf{G}'} \sum_{j} W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q}) \frac{\langle n | e^{i(\mathbf{G}-\mathbf{G}') \cdot \mathbf{r}} | n \rangle}{\omega_{j}} \end{split}$$

Self-consistent COHSEX + G^0W^0 + EET

The COHSEX self-energy is static:

$$\langle n | \Sigma_{c}^{COHSEX} | n \rangle = 2 \sum_{\mathbf{q}, \mathbf{G}, \mathbf{G}'} \sum_{j} W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q}) \sum_{v}^{occ} \frac{\langle n | e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}'} | v \rangle \langle v | e^{-i(\mathbf{q}+\mathbf{G}') \cdot \mathbf{r}'} | n \rangle}{\omega_{j}}$$
$$- \sum_{\mathbf{q}, \mathbf{G}, \mathbf{G}'} \sum_{j} W_{\mathbf{G}\mathbf{G}'}^{j}(\mathbf{q}) \frac{\langle n | e^{i(\mathbf{G}-\mathbf{G}') \cdot \mathbf{r}} | n \rangle}{\omega_{j}}$$

 $GW = scCOHSEX + G^{0}W^{0} (Bruneval et al. PRB 74, 045102 (2006))$

$$\frac{\text{LDA}}{\text{SnO}_2(E_g)} \frac{GW(\text{EET})}{0.91} \frac{\text{Experiment}}{3.8} \frac{3.6}{3.6}$$

AB, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)

SnO₂: Band structure

Optical absorption: EET for BSE

The Bethe-Salpeter equation:

$${}^{(4)}\chi = {}^{(4)}\chi_0 + {}^{(4)}\chi_0 ({}^{(4)}v_c + {}^{(4)}W){}^{(4)}\chi$$

Optics: Many, many k-points required; very tough to calculate W.

Optical absorpton: EET for TDDFT kernel

The NanoQuanta (NQ) TDDFT kernel (Sottile et al, PRL, 91, 056402(2003)):

$$\chi = \chi_0 + \chi_0 (v_c + f_{xc}) \chi$$
$$f_{xc}^{NQ} = \chi_0^{-1(3)} \chi^0 W^{(3)} \chi^0 \chi_0^{-1}$$

NQ(EET): explicit functional of Kohn-Sham density matrix $\rho_{KS}(\mathbf{r}, \mathbf{r}')$.

Converging GW calculations with EET

Increase precision: Add a couple of empty states

$$\sum_{c=N_{v}+1}^{\infty} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} = \sum_{c=N_{v}+1}^{M} \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}|c\rangle\langle c|e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\epsilon_{c}} + \frac{\langle n|e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}}\left(\sum_{c=M+1}^{\infty}|c\rangle\langle c|\right)e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'}|n\rangle}{\omega-\omega_{j}-\delta_{nj}(\mathbf{q},\mathbf{G},\mathbf{G}',\omega)}$$

Effective energy $\delta_{nj}(\mathbf{q}, \mathbf{G}, \mathbf{G}', \omega)$ is automatically adjusted.

Current implementation: EET input variables

- gw_eet: Order of approximation (Default: no EET)
- gw_eet_nband: Number of bands in SOS (Default: only occupied)
- gw_eet_inclvkb: Include or not the commutator of Hamiltonian with nonlocal part of PP (Default: not)

$$\begin{split} \delta_n^{(0)} &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} \\ \delta_n^{(1)} &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}} \\ \delta_{nj}^{(2)}(\omega) &= \epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}} \frac{\omega - \omega_j - \left[\epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{\rho j}}{f_n^{\rho \rho}}\right]}{\omega - \omega_j - \left[\epsilon_n + \frac{|\mathbf{q} + \mathbf{G}|^2}{2} + \frac{f_n^{j j}}{f_n^{\rho j}}\right]} \end{split}$$

Polarizability:

• nband: Number of bands in SOS for head and wings of $\chi^0_{GG'}(\mathbf{q}=\mathbf{0},\omega)$

Conclusions and Outlook

- With the EET we can perform GW calculations with occupied states only.
- The approach is simple with immediate speed ups of at least an order of magnitude for any system size.
- The EET is general and can be applied to other methods (BSE,TDDFT) and other spectral representations.
- Potential future applications include:
 - Self-consistency beyond COHSEX: updating only occupied states.
 - optimized effective potentials.
 - PAW

Acknowledgments

Palaiseau

- Francesco Sottile
- Lucia Reining

Louvain-la-Neuve

- Matteo Giantomassi
- Martin Stankovski
- Xavier Gonze

Optical absorpton: EET for TDDFT kernel

The NanoQuanta (NQ) TDDFT kernel (Sottile et al, PRL, 91, 056402(2003)):

$$\chi = \chi_0 + \chi_0 (v_c + f_{xc}) \chi$$
$$f_{xc}^{NQ} = \chi_0^{-1(3)} \chi^0 W^{(3)} \chi^0 \chi_0^{-1}$$

NQ(EET): explicit functional of Kohn-Sham density matrix $\rho_{KS}(\mathbf{r}, \mathbf{r}')$. $f^{\rho j}(\mathbf{q}, \mathbf{G}, \mathbf{G}) = -\int d\mathbf{r} d\mathbf{r}' e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} \rho_{KS}(\mathbf{r}', \mathbf{r}) \nabla' \rho_{KS}(\mathbf{r}, \mathbf{r}') \cdot (\mathbf{q}+\mathbf{G})$

EET for RPA correlation energies

RPA correlation energy:

$$E_{c} = \int_{0}^{\infty} \frac{d\omega}{2\pi} Tr \left[\ln(1 - \chi^{0}(i\omega)v_{c}) + \chi^{0}(i\omega)v_{c} \right]$$

EET for RPA correlation energies

RPA correlation energy:

$$E_{c} = \int_{0}^{\infty} \frac{d\omega}{2\pi} \operatorname{Tr} \left[\ln(1 - \chi^{0}(i\omega)v_{c}) + \chi^{0}(i\omega)v_{c} \right]$$

A Kohn-Sham density-matrix TDDFT kernel

$$f_{xc}^{NQ} = \chi_0^{-1} T \chi_0^{-1}$$
 where $T = {}^{(3)} \chi^0 \tilde{W}^{(3)} \chi^0$ and $\tilde{W} = (1 - v_c \tilde{\chi}^0)^{-1} v_c$

$$\begin{split} \tilde{\chi}^{0}_{\mathbf{GG}'}(\mathbf{q},\omega) &= \int d\mathbf{r} d\mathbf{r}' e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} g_{\mathbf{G}}(\mathbf{q},\omega) |\rho_{KS}(\mathbf{r},\mathbf{r}')|^{2} \\ \mathcal{T}_{\mathbf{GG}'}(\mathbf{q},\omega) &= g_{\mathbf{G}}(\mathbf{q},\omega) g_{\mathbf{G}'}(\mathbf{q},\omega) \bigg(\int d\mathbf{r} e^{i(\mathbf{G}-\mathbf{G}')\cdot\mathbf{r}} \int d\mathbf{r}_{1}\rho_{KS}(\mathbf{r},\mathbf{r}_{1}) \tilde{W}(\mathbf{r}_{1},\mathbf{r})\rho_{KS}(\mathbf{r}_{1},\mathbf{r}) - \\ \int d\mathbf{r} d\mathbf{r}' e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} e^{-i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}'} \rho_{KS}(\mathbf{r}',\mathbf{r}) \int d\mathbf{r}_{1}\rho_{KS}(\mathbf{r},\mathbf{r}_{1}) \\ &\times \bigg[\tilde{W}(\mathbf{r}_{1},\mathbf{r}) + \tilde{W}(\mathbf{r}_{1},\mathbf{r}') - \int d\mathbf{r}_{2}\rho_{KS}(\mathbf{r}_{2},\mathbf{r}) \tilde{W}(\mathbf{r}_{1},\mathbf{r}_{2})\rho_{KS}(\mathbf{r}',\mathbf{r}_{2}) \bigg] \rho_{KS}(\mathbf{r}_{1},\mathbf{r}') \bigg] \end{split}$$

where $g_{\mathbf{G}}(\mathbf{q},\omega)=1/[\omega-|\mathbf{q}+\mathbf{G}|^2/2].$