Determination of *U* in the PAW approximation in ABINIT

Donat J. Adams

Federal Institute of Materials Science and Technology (EMPA) Dübendorf, Switzerland

Bernard Amadon CEA, DAM, DIF

OVERVIEW

- MOTIVATION: DFT+U (DMFT)
- DETERMINATION U
- THEORY
- IMPLEMENTATION
- OUTLOOK
- CONCLUSIONS

Determination of *U* in the PAW approximation in ABINIT

MOTIVATION: LDA+U

approximation in ABINIT

12/04/2011

3

Materials Science & Technolog

MOTIVATION: LDA+U

Spectroscopy

 New solutions: LDA+U, LDA+DMFT, self-interaction corrected LSDA, hybrid functionals, GW

Determination of *U* in the PAW approximation in ABINIT

MOTIVATION: $p_{cr}(U,J)$ in LuFeO₃

D.J. Adams and B. Amadon, PRB 79, 115114 (2009).

Determination of *U* in the PAW approximation in ABINIT

5

- M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
- W. E. Pickett, S. C. Erwin, and E. C. Ethridge, Phys. Rev. B 58, 1201 (1998).
- P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev. Lett. 53, 2512 (1984).

Determination of *U* in the PAW approximation in ABINIT

6

- Implementation of method by Cococcioni and de Gironcoli (2005) in ABINIT (Gonze et al. 2006, Torrent et al. 2008).
- Linear response: Dederichs et al. (1984), Pickett et al. (1998) and Cococcioni and de Gironcoli (2002).
- No artificial constraints due to change of independent variable (use of lagrange multipliers).
- Subtraction of kinetic (Kohn-Sham) contribution.

$$E(n+1) + E(n-1) - 2E(n)$$

$$\chi_{IJ} = \frac{dn_I}{d\alpha_J}$$

12/04/2011

Determination of *U* in the PAW approximation in ABINIT

8

 Extrapolation to supercells (calculate Coulomb interaction in presence of crystal)

and 16 atoms in the actual calculation. Comparision with extrapolated results.

Determination of *U* in the PAW approximation in ABINIT

Normalization of localized states (e.g. Fe 3*d* within PAW region)

$$n_0(r) = \phi_0^*(r) \cdot \phi_0(r)$$
$$n'_0(r) = \frac{n_0(r)\Theta(r - r_{PAW})}{\langle \phi_0 \Theta(r - r_{PAW}) \rangle}$$

PAWsphere

$$U = \int \int_0^\infty n_0(r) \cdot n_0(r') \frac{1}{|r-r'|} \varepsilon^{-1} r'^2 r^2 dr dr'$$

$$U = \frac{1}{\left\langle \phi_0 \Theta(r - r_{PAW}) \right\rangle^2} \underbrace{\int \int_0^{r_{PAW}} n_0(r) \cdot n_0(r') \frac{1}{|r - r'|} \varepsilon^{-1} r'^2 r^2 dr dr'}_{\approx U_{\infty}}$$

Determination of *U* in the PAW approximation in ABINIT

10

DETERMINATION U: RESULTS

(black) Calculated values of U in *bcc* Fe. Green : Extrapolated values. U(r) has a universal behavior: It allows to extrapolate to arbitrary r.

Determination of *U* in the PAW approximation in ABINIT

DETERMINATION U: RESULTS

FeO: dependence of physical quantities upon PAW-radius. The gap varies little: An increase of U compensates the effect of the decrease of r_{PAW} .

Determination of *U* in the PAW approximation in ABINIT

DETAILS IMPLEMENTATION

DETAILS IMPLEMENTATION

• pawujdet

- activates determination of U (or J)
 - pawujdet = 1 : standard determination
 - pawujdet = 2 : determination of *U* on one spin channel (test)
 - pawujdet = 3 : determination of *J* (test)
- pawujv (optional)
 - Size of potential shift. Typically 0.1 -0.5 eV.
 - Default 0.1 eV
- pawujat (optional)
 - Determines atom U is determined on
 - Default: first atom lpaw>0

4.8

4.6

4.4

50

100

Fe2 in Fayalite. From Ref. 1.

Calculated Hubbard U on Fe1 and

U [eV]

Determination of *U* in the PAW approximation in ABINIT

DETERMINATION U: RESULTS

U calculated on the transition metal series. Top of errorbars: $U(r_{PAW})$, bottom of error-bars U(r), dots (•) $U(d_0/2)$, (d_0 interatomic distance). Reference data from Aryasetiawan et al. (2006): diamonds (•), *U* from cRPa; triangles (\blacktriangle) U from cLDA, circles (\circ) from HF calculations of Cox et al. (1974).

F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger, Physical Review B 74, 125106 (2006). B. N. Cox, M. A. Coulthard, and P. Lloyd, Journal of Physics F: Metal Physics 4, 807 (1974)

Determination of *U* in the PAW approximation in ABINIT

15

DETERMINATION U: RESULTS

U calculated on the reference transition metal oxydes: MnO, FeO, CoO and NiO

-	r _{PAW} a.u.	E_g [eV]	$E_g [eV]^a$	$\mu [\mu_B]$	$\mu \ [\mu_B]^a$	U [eV]	$U_{\rm ASA}~[{\rm eV}]$	$U [\mathrm{eV}]^a$	$U_{\infty} [eV]$	n_{TO}	r _{AS} a.u.
MnO	1.654	2.05	3.5	4.05	4.79	9.23	6.9	4.20	4.14	4.87	3.00
FeO	2.013	2.68	3.2	3.66	3.32	9.53	6.8	5.69	6.86	7.52	3.01
CoO	1.911	2.95	3.2	2.74	3.35	10.23	7.8	6.59	7.00	7.75	2.96
NiO	1.972	3.05	3.1	1.62	1.77	10.95	8.0	7.82	7.19	8.40	2.91

a.) V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991)

DETERMINATION U: CONCLUSIONS

- Consistent determination of *U* is important
- Strong (physical) dependence of *U* upon the sphere radius
- Universal behavior U(r)
- Upon extrapolation to U_{ASA} (or U_{∞}) good agreement with literature
- Fast & easy to use (no scripts needed, no further treatment)
- Treatment of all compounds (metals, transition metal oxides, *f*-electron systems)
- No constraints (all e-e interactions included), use LDA or GGA, use same basis as in DFT+U

Determination of *U* in the PAW approximation in ABINIT

LuFeO₃, a high precision calculation

Determination of *U* in the PAW approximation in ABINIT

LuFeO₃, a high precision calculation

Volume collapse 6% (Exp. 5.5%)

G. K. Rozenberg, M. P. Pasternak, W. M. Xu et al. Europhys. Lett. 71, 228 (2005).

D. J. Adams and B. Amadon, Study of the volume and spin collapse in orthoferrite LuFeO3 using LDA+U, Phys. Rev. **B** 79, 115114 (2009)

Determination of *U* in the PAW approximation in ABINIT

Ab initio + Geophysics

Measured wave velocities

- Numerical inversion =>
 - composition (*C*), temperature (*T*), fraction of partial melt (*F*)

Masters, G. et. al. (2000). In Karato, S. et al. Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Washington, Am. Geophys. Union. Deschamps, F. and Trampert, J. (2003). Phys. Earth Planet. Int., 140:277–291

-900

-450

Determination of *U* in the PAW approximation in ABINIT

450

 $d\ln V_p = \frac{\partial \ln V_p}{\partial T} dT + \frac{\partial \ln V_p}{\partial C} dC + \frac{\partial \ln V_p}{\partial F} dF$

 $d\ln V_s = \frac{\partial \ln V_s}{\partial T} dT + \frac{\partial \ln V_s}{\partial C} dC + \frac{\partial \ln V_s}{\partial F} dF$

0 dT (K) 900

OVERVIEW

- MOTIVATIONMOTIVATION: LDA+U
- DETERMINATION of U
- Outlook: GEOPHYSICS

Donat J. Adams Federal Institute of materials science and technology, EMPA Dübendorf, Switzerland

Determination of *U* in the PAW approximation in ABINIT

Determination of *U* in the PAW approximation in ABINIT

