Quasiparticle spectrum and optical properties of SnO₂

R. Saniz, A. Miglio, M. Stankovski, and B. Partoens

ABINIT Developer Workshop Han-sur-Lesse, April 11-14, 2011

Outline

- Introduction
- Electronic structure
- Optical absorption
- Quasiparticle spectrum of SnO₂
- Pressure effects
- Scalar relativistic pseudopotential
- Optical properties
- Conclusions and outlook

Transparent conducting oxides:

- band gap $\geq 2 \text{ eV}$
- resistivity $\leq 10^{-4} \Omega$ cm and $\mu \geq 50$ cm²/V s

SnO₂:

- band gap ~ 3.6 eV^1
- Ta-doped² resistivity ~ 2 x 10⁻⁴ Ω cm ... and μ ~ 60 cm²/V s

Introduction

¹M. Nagasawa and S. Shionoya, Phys. Lett. **22**, 409 (1966). ²S. Nakao *et al.*, Appl. Phys. Express **3**, 031102 (2010)

Electronic structure

The electron Green function describes the evolution of an excitation

$$G(\mathbf{r}_{1}, t_{1}; \mathbf{r}_{2}, t_{2}) = -\frac{i}{\hbar} \langle \Psi_{0} | T[\hat{\psi}(\mathbf{r}_{1}, t_{1}) \hat{\psi}^{\dagger}(\mathbf{r}_{2}, t_{2})] | \Psi_{0} \rangle$$

The Green function poles are single-particle excitation energies

$$\begin{split} G(\mathbf{r}_{1},\mathbf{r}_{2};\omega) &= \frac{1}{\hbar} \sum_{i} \frac{\langle \Psi_{0}^{(N)} | \hat{\psi}(\mathbf{r}) | \Psi_{i}^{(N+1)} \rangle \langle \Psi_{i}^{(N+1)} | \hat{\psi}^{\dagger}(\mathbf{r}') | \Psi_{0}^{(N)} \rangle}{\hbar \omega - \epsilon_{i}^{(N+1)} + i\eta} \\ &+ \frac{1}{\hbar} \sum_{i} \frac{\langle \Psi_{0}^{(N)} | \hat{\psi}^{\dagger}(\mathbf{r}') | \Psi_{i}^{(N-1)} \rangle \langle \Psi_{i}^{(N-1)} | \hat{\psi}(\mathbf{r}) | \Psi_{0}^{(N)} \rangle}{\hbar \omega - \epsilon_{i}^{(N-1)} - i\eta} \end{split}$$

Inverse photoemission: $N \rightarrow N+1$

¹L. Hedin, Phys. Rev. **139**, A796 (1965). ²W. G. Aulbur, L. Jönsson, and J. W. Wilkins, Solid State Phys. **54**, 1 (1999).

GW scheme

From the Dyson equation $\mathcal{H}_0(\mathbf{r})\psi_j(\mathbf{r}) + \int d^3r' \hbar \Sigma^*(\mathbf{r}, \mathbf{r}'; \epsilon_j)\psi_j(\mathbf{r}') = \epsilon_j \psi_j(\mathbf{r}).$

DFT-local density approx. $\Sigma(\mathbf{r}, \mathbf{r}'; \omega) = \delta(\mathbf{r} - \mathbf{r}') V_{xc}(\mathbf{r})$

"GW" approximation

 $\Gamma = 1 \implies \Sigma = GW$

¹From W. G. Aulbur, L. Jönsson, and J. W. Wilkins, Solid State Phys. **54**, 1 (1999).

Optical absorption

Macroscopic dielectric function

$$\varepsilon_{M}(\boldsymbol{\omega}) \equiv \lim_{\mathbf{q} \to 0} \frac{1}{\varepsilon_{\mathbf{G}=0,\mathbf{G}'=0}^{-1}(\mathbf{q},\boldsymbol{\omega})},$$
$$= 1 - \lim_{\mathbf{q} \to 0} [v(\mathbf{q})_{0}\overline{P}_{\mathbf{G}=\mathbf{G}'=0}(\mathbf{q},\boldsymbol{\omega})]$$

Photoabsorption: two-particle excitation process ... but the GW polarizability does not contain electron-hole interactions!

Vertex corrections:

$$\frac{\delta\Sigma(12)}{\delta G(45)} \simeq i\hbar\delta(14)\delta(25)W(1^+2)$$

=> Bethe-Salpeter equation for the polarisability

$${}^{4}\overline{P} = {}^{4}P_{IQP} + {}^{4}P_{IQP}K {}^{4}\overline{P},$$

 $K(1234) = \delta(12)\,\delta(34)\overline{v(13)} - \delta(13)\,\delta(24)W(12)$

 ${}^{4}P$ = "4-point" polarisability ${}^{4}P_{IQP}$ = independent quasiparticle polarisability v = bare Coulomb interaction W = dinamically screened Coulomb interaction

¹From A. J. Morris, M.Sc.Thesis, University of York, 2006.

Quasiparticle spectrum of SnO₂

B (GPa)

 $212.3^{(3)}$

DFT calculations

22e PP required: [Ge] $4s^24p^64d^{10}5p^25s^2$ (Opium code¹) ... 105 Ha ecut!

c (Å)

3.1864

3.1864

u

0.30562

0.30605

Structural properties

a (Å)

4.7374

4.7154

Exp.²

Theory

a contraction of the second se	Sr O
--	---------

SnO₂ structure: Rutile (*P*4₂*mnm*)

¹ opium.sourceforge.net/index.htn	nl
² A. Bolzan <i>et al.</i> , Acta Cryst. B53	, 373 (1997).
³ E. Chang and E. Graham, J. Ge	ophys. Res. 80,
2595 (1975).	0

— LDA + shift

Universiteit Antwerpen

For ref., optical gap at Γ : 3.6 eV

Gap values (eV):

k pt	Γ	Х	М	Z
LDA	1.80	5.42	6.17	7.99
GW	3.85	7.69	8.72	10.81
ΔE	2.05	2.27	2.55	2.82

Effective masses (m_e):

	m*⊥	m* _{ll}	m* _p
Exp ¹ .	0.299	0.234	0.275
Theory	0.253	0.223	0.271

¹K. Button et al., Phys. Rev. B 4, 4539 (1971).

Universiteit Antwerpen

¹E. Chang and E. Graham, J. Geophys. Res. **80**, 2595 (1975).

Pressure and GW

GW corrections at high symmetry k-points

k pt	Γ	Х	М	Z
∆E (P=0)	2.05	2.27	2.55	2.82
∆E (P=3.1 GPa)	2.08	2.30	2.57	2.84

 $P_{coeff} GW = 27 \text{ meV/GPa}$ $P_{coeff} GW/P_{coeff} GW = 0.74$

Scalar relativistic pseudopotential

Scalar relativistic effects \Rightarrow shrinkage of core s and p shells \Rightarrow change of bandwidths and E_g

Structural parameters

	a (Å)	c (Å)	u
Exp. ²	4.7374	3.1864	0.30562
Theory	4.7185	3.1849	0.30620

SR E_g = 0.81 eV (vs 1.80 eV in NSR !)

Elastic constants

	с ₁₁	с ₃₃	C ₁₂	с ₁₃	C ₄₄	C ₆₆
Exp. ¹	261.7	449.6	177.2	155.5	103.1	207.4
Theory	238.7	416.9	177.4	152.8	91.6	204.4
	s ₁₁	S ₃₃	s ₁₂	S ₁₃	s ₄₄	S ₆₆
Theory	9.808	3.281	-6.520	-1.205	10.916	4.892

B_{SR}=202.6 GPa B_{NSR}=211.7 GPa B_{exp}=212.3 GPa

m*_p

0.204

GW gaps (eV)

Effective masses (m_e)

			-			
k pt	Γ	Х	М	Z		m*.
NSR	3 85	7 69	8 72	10.81		···· -
NON	0.00	7.00	0.72	10.01	NSR	0 253
SR	2.65	6.75	7.59	9.53		
					CD	0 1 9 0
						$\downarrow 0.103$

Gaps go down

... and effective masses go down

m*∥

0.223

Optical properties

Caution: dense k-point needed (> 5Gb memory/proc.)

Imaginary part of the macroscopic dielectric function: LDA-RPA vs GW-RPA vs Bethe-Salpeter

Absorption edge and structure at higher energies

Absorption edge and structure also at low energies

Conclusions and outlook

• Structural and elastic properties are accurately predicted.

• GW corrections are band and momentum dependent.

 ... but require more work: quasi-particle selfconsistent calculation (cassiterite_i_SCR = 65 Gb, GW corrections = 11 Gb/proc. with spectral method).

 Bethe-Salpeter shows important excitonic effects.
Future work: Wannier interpolation for GW eigenvalues and LDA for wavefunctions?