Calculations of de Haas van Alphen frequencies: an ab initio approach
Simon Blackburn, Michel Côté
Université de Montréal, Canada

Plan

- Reminder of the theory
- MLWF
- Code explanation
- Iron pnictides superconductors
- Results
- Magnetic Breakdown

Experiment

- Sample in a magnetic field
- Torque on the cantilever measures the sample's magnetization
- Oscillations are important!

Semi-classical equations

- Bohr-Sommerfeld quantization

- Frequencies are a measure of the Fermi surface!
- Only extrema contribute.

Precision

- Typical ab initio calculation for copper: 6x6x6 k-points
- Too few points to calculate the area of a cross-section precisely
- We need interpolation.
- No need to sample all the Brillouin zone: we only need information on a plane normal to the magnetic field.

Plan

- Reminder of the theory
- MLWF
- Code explanation
- Iron pnictides superconductors
- Results
- Magnetic Breakdown

MLWF

- From Abinit -> Wannier90
- Generalized Wannier function:

$$
\left|u_{n \mathbf{k}}\right\rangle \rightarrow \sum U_{m n}^{(\mathbf{k})}\left|u_{m \mathbf{k}}\right\rangle
$$

- With $U^{(k)}$ defined such that the spread is minimized ${ }^{1,2}$

$$
\left.\sum_{n} \sum_{\mathbf{k}}\left\langle u_{n \mathbf{k}}\right| r^{2}\left|u_{n \mathbf{k}}\right\rangle-\left|\left\langle u_{n \mathbf{k}}\right| \mathbf{r}\right| u_{n \mathbf{k}}\right\rangle\left.\right|^{2}
$$

- The Hamiltonian in this rotated basis (U) is no longer diagonal:

$$
\epsilon_{n \mathbf{k}} \delta_{n m} \rightarrow H_{n m}(\mathbf{k})
$$

MLWF (2)

- Fourier transform : $H(\mathbf{k}) \rightarrow H(\mathbf{R})$
- Since the basis is localized, $H(\mathbf{R})$ converges to zero quickly.
- Can be interpolated on an arbitrary point in k-space (called q):

$$
H(\mathbf{R}) \rightarrow H(\mathbf{q})
$$

- This method is used to calculate the band energies (eigenvalues of $\mathrm{H}(\mathrm{q})$ on a plane normal to the magnetic field)

Getting a faster interpolation

$$
H(\mathbf{q})=\sum_{\mathbf{R}} e^{i \mathbf{q} \cdot \mathbf{R}} H(\mathbf{R})
$$

- Number of $R=$ number of k-points in the ABINIT calculations
- Size of the Hamiltonian = number of Wannier functions
- Tuned by rejecting low (and high) energy state
- Careful about reproducing correctly the FS

Plan

- Reminder of the theory
- MLWF
- Code explanation
- Iron pnictides superconductors
- Results
- Magnetic Breakdown

Code: dHvA.py

- Input:
- $\mathrm{H}(\mathbf{R})$ from Wannier90
- Direction for the magnetic field
- Option for the Fermi surface slice
- Output:
- Energy of the plane
- Possible orbits (open and close)
- dHvA frequencies (area of closed orbits)
- Going further:
- Relative intensity of the signal
- Effective mass

Slicing the Fermi surface

- Periodic boundary conditions:
- Finds all the possible orbits
- Force a specific direction for B
- Unable to calculate efficiently the area of a specific orbit (too much useless information)
- 'Manual' choice
- Manually choose the direction of the magnetic field, the size and origin of the plane
- Cannot find an orbit (need to know its position)
- Much more accurate (useless information is cut out)

Periodic boundary condition: example BCT crystal

- For a magnetic field in the $[\cos \theta 0 \sin \theta]$ direction

$$
\left(\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{\mathbf{3}}\right)=\left(\begin{array}{ccc}
-a / 2 & a / 2 & a / 2 \\
a / 2 & -a / 2 \\
c / 2 & c / 2 & a / 2 \\
\hline
\end{array}\right) \quad\left(\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3}\right)=\left(\begin{array}{ccc}
0 & \tilde{a} / 2 & \tilde{a} / 2 \\
\tilde{a} / 2 \\
\tilde{c} / 2 & 0 \\
\tilde{c} / 2 & 0
\end{array}\right)
$$

- For y direction, take a segment of length ã
- For x\&z:

$$
\begin{gathered}
(L \cos \theta 0 L \sin \theta)=n_{1} \mathbf{b}_{1}+n_{2} \mathbf{b}_{2}+n_{3} \mathbf{b}_{3} \\
\tan \theta=\frac{\tilde{c}}{\tilde{a}} \frac{n_{1}+n_{3}}{n_{3}-n_{1}}=\frac{a}{c} \frac{p}{q}
\end{gathered}
$$

$\mathrm{H}(\mathrm{q})$ and diagonalize

- Calculate $\mathrm{H}(\mathrm{q})$ for every point on the plane
- Done in a C module: more efficient
- Only interested in a limited set of bands (do not store those not crossing the Fermi level)
- Suppose that each band can be treated separately (disconnected pieces of the FS)

Finding the orbit

- For a given band, find all the points where the energy changes sign (0 is the Fermi level)

$$
\begin{gathered}
\operatorname{LaFe}_{2} \mathrm{P}_{2}: \mathrm{B}=[001] \\
\mathrm{k}_{\mathrm{z}}=0.05 * 2 \pi / \mathrm{c}
\end{gathered}
$$

- Connect the dots
- Calculate the area
- Converge!

Shifting the plane

- Shift the origin of the plane
- Find the extremum: these are the dHvA frequencies
- Intensity (finite difference).

$$
I \propto\left(\frac{\partial^{2} A}{\partial k_{B}^{2}}\right)^{-1 / 2}
$$

- Effective cyclotron mass (finite difference):

$$
m^{*}=\frac{\hbar^{2}}{2 \pi}\left(\frac{\partial A}{\partial E_{F}}\right)
$$

Test case: copper

- For a magnetic field in the [111] direction
de Haas van Alphen Frequencies: Copper
Magnetic Field in the [111] direction

Plan

- Reminder of the theory
- MLWF
- Code explanation
- Iron pnictides supercondu'ctors
- Results
- Magnetic Breakdown

AYNTKAIPSBWTATA

All You Need To Know About Iron Pnictide Superconductor But Were Too Afraid To Ask
$\mathrm{LaO}_{1-\mathrm{x}} \mathrm{F}_{\mathrm{x}} \mathrm{FeAs}$

1. Kamihara Y., JACS 130, 3296 (2008)
2. Luetkens H., Nature Materials 8, 305 (2009)
3. Damascelli A. RMP 75, 473 (2003)

AYNTKAIPSBWTATA

All You Need To Know About Iron Pnictide Superconductor But Were Too Afraid To Ask

$$
\mathrm{LaO}_{1-\mathrm{x}} \mathrm{~F}_{\mathrm{x}} \mathrm{FeAs}
$$

AYNTKAIPSBWTATA

1. Rotter M., PRL 101, 107006 (2008)
2. Wang X., New Journal of Physics 11, 045003 (2009)
3. Chen H. EPL 85, 17006 (2009)

$\mathrm{BaFe}_{2-x} \mathrm{Co}_{x} \mathrm{As}_{2}$ Electron Doped
$\mathrm{Ba}_{1-\mathrm{x}} \mathrm{K}_{\mathrm{x}} \mathrm{Fe}_{2} \mathrm{As}_{2}$ Hole Doped

Band Structure \& FS

LaOFeAs: DOS

Stripe order (SDW)
$\mathrm{s}_{ \pm}$model for
superconducting gap

Plan

- Reminder of the theory
- MLWF
- Code explanation
- Iron pnictides superconductors
- Results
- Magnetic Breakdown

$\mathrm{BaRh}_{2} \mathrm{P}_{2}$ and $\mathrm{Balr}_{2} \mathrm{P}_{2}$

- We substitute iron $\left(\mathrm{BaFe}_{2} \mathrm{P}_{2}\right)$ by rhodium or iridium.

*Lanthanide series	$\begin{gathered} \begin{array}{c} \text { lanthanum } \\ 57 \\ \text { La } \end{array} \end{gathered}$	${ }_{\text {ce }}^{\substack{\text { cefium } \\ \\ \mathrm{Ce}}}$	${ }_{5 r}^{59}$	Nd^{60}	$\begin{gathered} \text { promentium } \\ 61 \\ \text { Pm } \end{gathered}$	$\begin{aligned} & \substack{\text { samarium } \\ 62 \\ \text { Sim }} \end{aligned}$	${ }_{\text {EU }}^{\substack{\text { europium } \\ 63}}$	Gd	${ }_{\text {Tb }}^{\substack{\text { terbium } \\ 65}}$	$\substack{\text { dyspososium } \\ 66 \\ \text { Dy }}$	$\substack{\text { nolmium } \\ 67 \\ \text { Ho }}$	${ }_{\text {Er }}^{\text {er }}$ (${ }^{\text {er }}$	Tm	yteerium 70 $\mathbf{Y b}$
**Actinide series	138.91	140.12	140.91	144.24	1145	${ }_{150.36}$	151.96	157.25	158.93	162.50	164.93	${ }_{167.26}$	168.93	173.04
	${ }_{89}^{\text {achinum }}$	${ }_{90}^{\text {tharium }}$	protacinum 91	$\begin{gathered} \text { urahimim } \\ 92 \end{gathered}$	$\begin{gathered} \text { neptunium } \\ 93 \end{gathered}$	$\begin{aligned} & \text { plutonium } \\ & \hline 94 \end{aligned}$	$\begin{aligned} & \text { amencicum } \\ & 95 \end{aligned}$	carrum 96	$\begin{aligned} & \text { berkellum } \\ & \hline 7 \end{aligned}$	$\begin{aligned} & \text { califombum } \\ & 98 \end{aligned}$	$\begin{aligned} & \text { einstienium } \\ & 99 \end{aligned}$	$\begin{aligned} & \text { Ternium } \\ & 100 \end{aligned}$	101	$\begin{gathered} \text { nobelilum } \\ 102 \end{gathered}$
	Ac	Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[24]	[243]	1247	[247]	${ }^{2511}$	${ }^{252]}$	[257]	[258]	1259

Fermi Surfaces

$\mathrm{BaRh}_{2} \mathrm{P}_{2}$

$\mathrm{Balr}_{2} \mathrm{P}_{2}$

Results: $\mathrm{BaRh}_{2} \mathrm{P}_{2}$

$\mathrm{BaRh}_{2} \mathrm{P}_{2}$ de Haas-van Alphen Frequencies

Results: Balr $_{2} \mathrm{P}_{2}$

Balr $_{2} \mathrm{P}_{2}$ de Haas-van Alphen Frequencies

27

$\mathrm{LaFe}_{2} \mathrm{P}_{2}$ and $\mathrm{CeFe}_{2} \mathrm{P}_{2}$

- Changing the rare earth

$\begin{gathered} \text { hyydrogen } \\ 1 \\ \mathrm{H} \end{gathered}$																		$\begin{gathered} \substack{\text { nellum } \\ 2 \\ \mathrm{He}} \end{gathered}$
${ }^{\text {I.tiou9 }}$	beryllum												boron	carton	nitrogen	oxyen	fluorine	4.0026
3	4												5		7	8	9	10
Li	Be												B	C	N	0	F	Ne
6.941	9.122												10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesumm												${ }^{\text {a aluminum }}$	silicon	prosphorus	sultur		argon
11	12												13	14	15	16	17	18
Na	$\mathbf{M g}$												AI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	${ }^{3} 5.453$	39.948
${ }^{\text {potassum }} 19$	${ }_{20}{ }^{\text {calcum }}$		${ }_{21}^{\text {scandum }}$	${ }_{22}{ }^{\text {Itanum }}$	${ }_{23}^{\text {vanadum }}$	${ }_{24}^{\text {chromum }}$	${ }^{\text {manganese }}$	${ }_{26}^{1 / 0}$	${ }_{27}^{\text {cobat }}$	${ }_{28}^{\text {nickel }}$	${ }^{\text {copper }}$	${ }_{30}^{2 m \mathrm{lnc}}$	${ }_{31}^{\text {gallum }}$	${ }_{32}^{\text {germanum }}$	arsench 33	${ }_{34}$	${ }_{35}$	${ }_{36}^{\text {krypon }}$
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.966	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74,922	78.96	79.904	83.80
rubldum	strontium		yxtrium	zrroonum	niobium	molydenum	lecmetium	ruthenium	thodium	palladium	stlver	caamium	indum	,	antimony	tellurium	lodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	\|	Xe
${ }_{85,468}$	87.62		${ }^{88,906}$	91.224	${ }^{92,906}$	95,94	1981	${ }_{10107}$	102.91	106.42	107.87	112.41	114.82	${ }_{118,71}$	121.76	127.60	126.90	
caestum			${ }^{\text {lutuetum }}$	natnium	tantaum	turgsten	Mentum	osmium	${ }^{\text {lidium }}$	platinum	gold	mercury	thallum	lead	bismuth	polonium	astatine	
55	Stic	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	$\mathbf{R n}$
${ }^{132.91}$			174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	1209	1210	[22]
${ }_{87}^{\text {trancum }}$	${ }_{88}^{\text {radum }}$	89-102	${ }^{\text {lawencum }}$	104	${ }^{\text {dutanum }}$	${ }_{106}^{\text {seaboryum }}$	${ }_{107}^{\text {bohrium }}$	${ }^{\text {hasssum }}$	${ }^{\text {methnefum }}$	110	${ }_{111}^{\text {unumumu }}$	${ }_{1}^{\text {unubium }}$		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	1226		[262]	[261]	$1262]$	[266]	[264]	1269	[268]	[271]	[172]	${ }_{[277}$		${ }_{1289}$				

*Lanthanide series		Ce	$\begin{aligned} & \text { manem } \\ & \text { Pr } \end{aligned}$	$\begin{aligned} & \text { neannum } \\ & \mathrm{Nd} \\ & \mathrm{Nd} \end{aligned}$		$\begin{aligned} & \text { samadum } \\ & S_{62} \end{aligned}$	$\begin{aligned} & \substack{\text { europum } \\ 63 \\ \text { Eu }} \end{aligned}$	$\begin{aligned} & \text { gaxanam } \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & \text { tentum } \\ & \text { Tb } \end{aligned}$	$\begin{aligned} & \substack{\text { drspassum } \\ 66 \\ \text { Dy }} \end{aligned}$	$\begin{aligned} & \text { nanam } \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & \text { emblum } \\ & \text { E8 } \\ & \text { Er } \end{aligned}$	$\begin{aligned} & \substack{\text { mumm } \\ \text { Tmom }} \end{aligned}$	Yb
**Actinide series		${ }_{\text {com }}^{\text {motum }}$	91	cot		cise								
	Ac	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	Pa	\mathbf{U}^{92}	Np	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	Am	$\begin{aligned} & 96 \\ & \mathbf{C m} \end{aligned}$	Bk	${ }^{98}$	${ }^{99}$	Fm	Md	No
	1227			23803		[244]	[243]	${ }_{[247}$	[247]		Es			

Results: LaFe $_{2} \mathrm{P}_{2}$

Results: $\mathrm{CeFe}_{2} \mathrm{P}_{2}$

$\mathrm{CeFe}_{2} \mathrm{P}_{2}$ de Haas-van Alphen Frequencies

Plan

- Reminder of the theory
- MLWF
- Code explanation
- Iron pnictides superconductors
- Results
- Magnetic Breakdown

Magnetic Breakdown

- When 2 pieces of the FS are close, the orbit can change

Example of MB

$\mathrm{LaFe}_{2} \mathrm{P}_{2}$: magnetic field in the $[\sin \theta 0 \cos \theta]$ direction $\theta=47.74 \mathrm{deg}$; origin shifted by $0.5 * 2 \pi / \mathrm{c}$ along k_{z} direction

Is this possible?

$\mathrm{LaFe}_{2} \mathrm{P}_{2}$: magnetic field in the $[\sin \theta 0 \cos \theta]$ direction $\mathrm{LaFe}_{2} \mathrm{P}_{2}:$ magnetic field in the $[\sin \theta 0 \cos \theta]$ direction

Normal connection

Continuous orbit

Is this possible?

$\mathrm{LaFe}_{2} \mathrm{P}_{2}$: magnetic field in the $[\sin \theta 0 \cos \theta]$ direction $\mathrm{LaFe}_{2} \mathrm{P}_{2}:$ magnetic field in the $[\sin \theta 0 \cos \theta]$ direction

Normal connection

Continuous orbit

Is this possible?

$\mathrm{LaFe}_{2} \mathrm{P}_{2}$: magnetic field in the $[\sin \theta 0 \cos \theta]$ direction
$\theta=47.74 \mathrm{deg}$; origin shifted by c / a along k_{z} direction
$\mathrm{LaFe}_{2} \mathrm{P}_{2}: \underset{\theta=4774 \text { deg. origin shifted by } \text { cla along } k \text { direction }}{\text { magnetic field }}$ direction $\theta=47.74 \mathrm{deg}$; origin shifted by c / a along k_{z} direction

Normal connection
Zoom near the crossing

Is this possible?

$\mathrm{LaFe}_{2} \mathrm{P}_{2}$: magnetic field in the $[\sin \theta 0 \cos \theta]$ direction
$\theta=47.74 \mathrm{deg}$; origin shifted by c/a along k_{z} direction

Normal connection
$\mathrm{LaFe}_{2} \mathrm{P}_{2}:$ magnetic field in the $[\sin \theta 0 \cos \theta]$ direction $\theta=47.74 \mathrm{deg}$; origin shifted by c / a along k_{z} direction

Is this possible?

$\mathrm{LaFe}_{2} \mathrm{P}_{2}: \underset{\theta=47.74 \mathrm{deg} \text { origin shifted }}{\text { magnetic }}$ field $[\sin \theta 0 \cos \theta]$ direction $\theta=47.74 \mathrm{deg}$; origin shifted by c/a along k_{z} direction

Band structure near the crossing
Zoom near the crossing

Conclusion

- We presented a novel way of calculating dHvA frequencies using maximally localized Wannier function
- Accurate
- Low computational cost
- Results for various iron pnictides: LaFe2P2, CeFe2P2, BaRh2P2, Balr2P2
- If 2 (or more) bands are almost degenerate at the Fermi level, the electron orbit is reconstruted (breakdown of the semi-classical equation of motion)

Acknowledgement

- Thanks to:
- NSERC for financial support
- RQCHP, CLUMEQ and Compute Canada for computational resources
- Collaborators (experimental part of the project):
- Bobby Prévost, Andrea Bianchi (UdM)
- Marek Bartkowiak (Paul Scherrer Institut-LDM, PSI, Switzerland)
- Beate Bergk, Oleg Ignatchi, Jochen Wosnitza (Dresden High Magnetic Field Laboratory, Germany)
- Gabriel Seyfarth (University of Geneva, Switzerland)
- Cigdem Capan, Zachary Fisk (University of California Irvine, USA)

