

nergie atomique • energies alternatives

A Fully Self Consistent Implementation of LDA+DMFT in Abinit

Bernard Amadon

CEA, DAM, DIF, F-91297 Arpajon, France

Thanks to F. Jollet, M. Torrent

- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
- LDA+DMFT and Abinit: Current status
- LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.
 - Input variables
 - Automatic tests
- Test/Check of the implementation
- Some results
- Conclusion: Current status and projects.

Strong correlation and LDA+DMFT/+U: Reminder/Introduction

energie atomique • energies alternatives

Strong local correlations: Introduction (I)

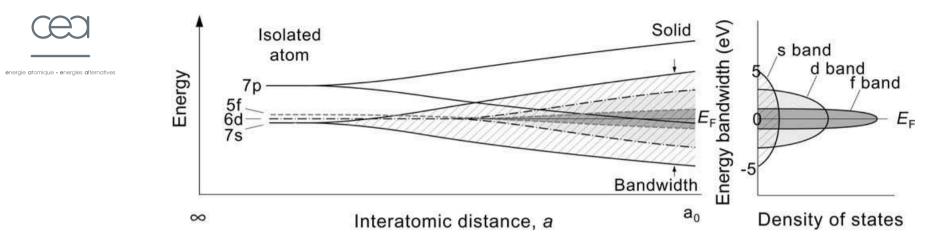


Fig. 5. Schematic of overlapping energy bands and density of states.

- 3d, 4f and 5f elements: localized atomic wavefunctions \Rightarrow strong correlations.
 - Small overlap: bands are narrow (width: W).
 - Strong interactions "U" between electrons.
 - \Rightarrow From the ratio of U and W, depends the impact of correlations.
- $U/W \gg 1$: Localization
- $U/W \ll 1$: Delocalization

• Hamiltonian to solve (*i*: électrons):

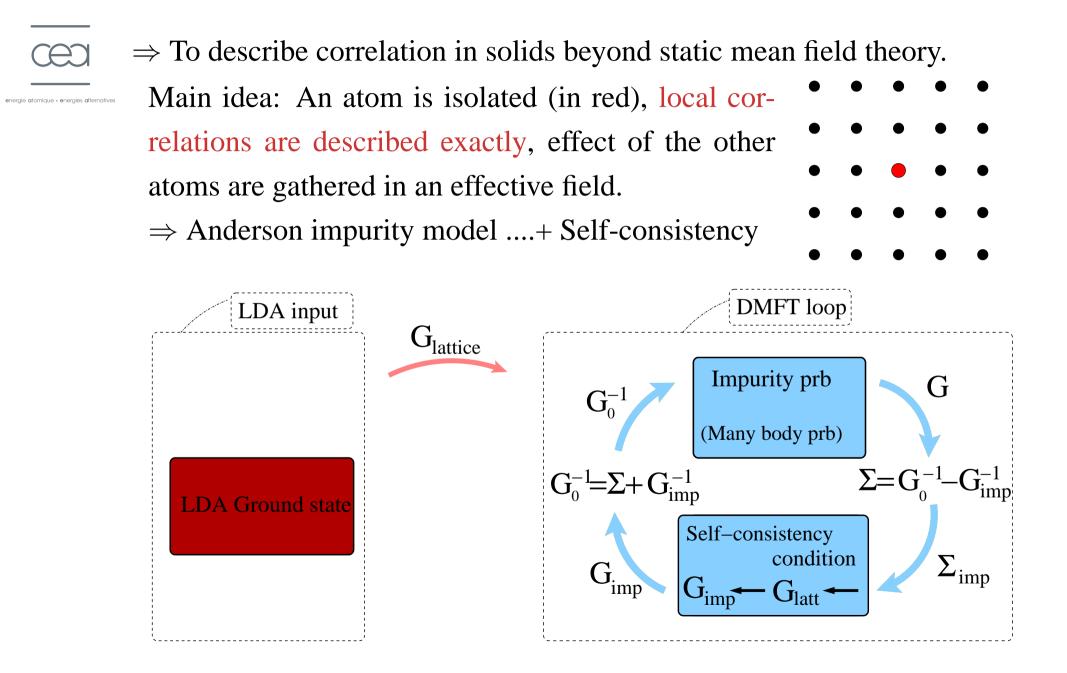
$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2} + V_{\text{ext}}(\mathbf{r}_{i}) \right] + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

- Strong local correlation local: For localized orbitals (f, d).
- Other orbitals: DFT(LDA/GGA)

$$H_{\text{LDA}} = 1 \text{ electron LDA term}$$

$$H_{\text{Correlations}} = \text{Corrected LDA one electron term} + \underbrace{N \text{ body interaction term}}_{\frac{U}{2}\sum_{i\neq j}\hat{n}_{i}\hat{n}_{j}}$$

$$E_{\text{LDA+U}} = E_{\text{LDA}} - U\frac{N(N-1)}{2} + \frac{U}{2}\sum_{i\neq j}n_{i}n_{j}$$


 Limitations of LDA+U: no delocalization, no Kondo effects ⇒ DMFT.

The Dynamical Mean Field Theory (DMFT)

 (\mathcal{C})

⇒ To describe correlation in solids beyond static mean field theory.
Main idea: An atom is isolated (in red), local correlations are described exactly, effect of the other atoms are gathered in an effective field.
⇒ Anderson impurity model+ Self-consistency
see review A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg Rev. Mod. Phys. 68, 13 (1996)

The Dynamical Mean Field Theory (DMFT)

Outline of the presentation

- œ
- nergie atomique energies alternatives
- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
- LDA+DMFT and Abinit: Current status

• Abinit 6.6.2

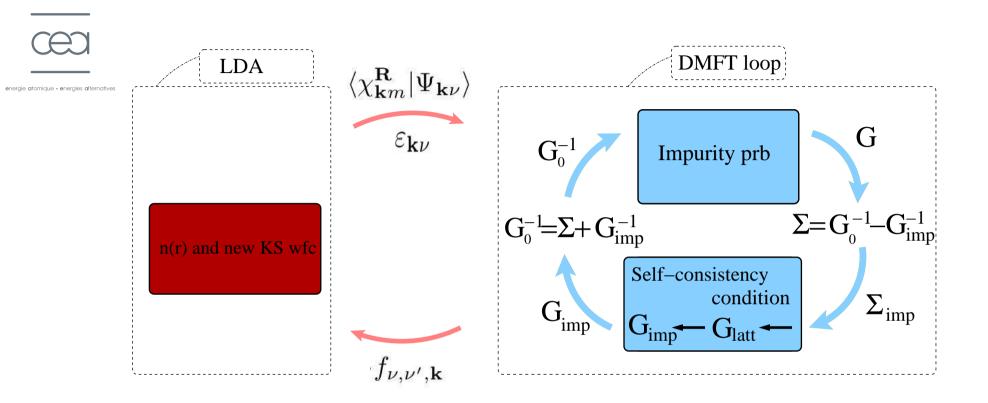
- DMFT Loop.
- Anderson model solved with Hubbard I Solver.
- Self-consistency over electronic Density.
- Calculation of Total Energy .
- Currently tested and not yet committed
 - Anderson model solved with Hirsch Fye Quantum Monte Carlo
 - Calculation of Total Energy in QMC.
- In progress
 - Anderson model solved with Continuous Time Quantum Monte Carlo: See the poster of Jordan Bieder !!
- In project
 - Forces (and phonons)
 - Improvement of the DMFT self-consistency cycle
 - Spin Orbit (done for NSCF calculations)

nergie atomique • energies alternatives

- (C = C = C)
- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
 - LDA+DMFT and Abinit: Current status
 - LDA+DMFT implementation in Abinit
 - Formalism

- Correlated d/f orbitals χ .
 - First implementations: The local correlated subspace is a subset of the basis
 - LMTO Lichtenstein and Katsnelson 1998
 - Maximally Localized Wannier Functions (ML-Wannier)
 - Wanniers or NMTO (Pavarini *et al* 04, Anisimov *et al* 05)
 - Maximally localized Wanniers and NMTO (Lechermann *et al* 06)
 - A simple formalism: Projected local orbitals (Anisimov *et al* 05, Amadon *et al* 08)
 - Independant of the basis
 - Does not require the construction of ML-Wannier
 - Easy to implement in plane waves codes
- Screened Interaction U ? see presentation of Donat Adams

Formalism: The projected scheme


- The number of Bloch states N is an input for the calculation.
- The definition of χ_m depends on N.

Projectors: $P_{m\nu}(\mathbf{k}) \equiv \langle \chi_{\mathbf{k}m} | \Psi_{\mathbf{k}\nu} \rangle$, $P^*_{\nu m}(\mathbf{k}) \equiv \langle \Psi_{\mathbf{k}\nu} | \chi_{\mathbf{k}m} \rangle$.

$$\begin{split} \Delta \Sigma_{\nu\nu'}^{\text{bloch}}(\mathbf{k}, i\omega_n) &= \sum_{mm'} P_{\nu m}^*(\mathbf{k}) \left(\Sigma_{mm'}^{\text{imp}}(i\omega_n) - \Sigma_{mm'}^{\text{dc}} \right) P_{m\nu}(\mathbf{k}) \\ G_{\nu\nu'}^{\text{bloch}}(\mathbf{k}, i\omega_n) &= \left\{ \frac{1}{(i\omega_n + \mu - \varepsilon_{\mathbf{k}\nu})\delta_{\nu\nu'} - \Delta \Sigma_{\nu\nu'}^{\text{bloch}}(\mathbf{k}, i\omega_n)} \right\}_{\nu\nu'} \\ G_{mm'}^{\text{imp}}(i\omega_n) &= \sum_{\mathbf{k}, \nu\nu'} P_{m\nu}(\mathbf{k}) G_{\nu\nu'}^{\text{bloch}}(\mathbf{k}, i\omega_n) P_{\nu m}^*(\mathbf{k}) \\ \hline G_{0}^{-1} = \Sigma + G_{0}^{-1} \sum_{\mathbf{k}, \nu\nu'} S_{0}^{-1} - G_{0}^{-1} \\ G_{0}^{-1} = \Sigma + G_{0}^{-1} \sum_{\mathbf{k}, \nu\nu'} S_{0}^{-1} - G_{0}^{-1} \\ \hline G_{0}^{-1} = \Sigma + G_{0}^{-1} \sum_{\mathbf{k}, \nu\nu'} S_{0}^{-1} \\ \hline G_{0}^{-1} = \Sigma + G_{0}^{-1} \sum_{\mathbf{k}, \nu\nu'} S_{0}^{-1} \\ \hline G_{0}^{-1} = \Sigma + G_{0}^{-1} \\ \hline G_{0}^{-1} \\ \hline G_{0}^{-1} = \Sigma + G_{0}^{-1} \\ \hline G_{0}^{-1}$$

.

Formalism: Self Consistency over electronic density

- The introduction of correlations changes the electronic density
- To do the DMFT loop for a given LDA iteration, one needs:
 - The LDA eigenvalues $\epsilon(\mathbf{k}, n)$ computed for a given density $n(\mathbf{r})$.
 - The projections $\langle \chi_m | \Phi(\mathbf{k}, n) \rangle$ computed for a given density $n(\mathbf{r})$.
- From DMFT, non-diagonal occupations $f_{n,n'}(\mathbf{k})$ are used to compute the density

Formalism: Self Consistency over electronic density

 $n(\mathbf{r}) = \widetilde{n}'(\mathbf{r}) + n^{1'}(\mathbf{r}) - \widetilde{n}^{1'}(\mathbf{r})$

$$\widetilde{n'}(\mathbf{r}) = \sum_{n,n',\mathbf{k}} f_{n,n',\mathbf{k}} \widetilde{\Psi}_{n,\mathbf{k}}^*(\mathbf{r}) \widetilde{\Psi}_{n',\mathbf{k}}(\mathbf{r})$$

and,

with

argie atomique • energies alternatives

$$n^{1'}(\mathbf{r}) = \sum_{ij} \rho'_{ij} \phi_i(\mathbf{r}) \phi_j(\mathbf{r})$$
$$\widetilde{n}^{1'}(\mathbf{r}) = \sum_{ij} \rho'_{ij} \widetilde{\varphi}_i(\mathbf{r}) \widetilde{\varphi}_j(\mathbf{r})$$

and

$$\rho_{ij}' = \sum_{n,n',\mathbf{k}} f_{n,n',\mathbf{k}} \langle \widetilde{\Psi}_{n,\mathbf{k}} | \widetilde{p}_j \rangle \langle \widetilde{p}_i | \widetilde{\Psi}_{n',\mathbf{k}} \rangle$$

$$E_{\rm LDA+DMFT} = E_{\rm LDA} - \sum f_{\mathbf{k},n}^{\rm Ida} \epsilon_{\mathbf{k},n} + \sum f_{\mathbf{k},n}^{\rm dmft} \epsilon_{\mathbf{k},n} + E_U - E_{\rm DC}$$

(two ways..)

- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
 - LDA+DMFT and Abinit: Current status
 - LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.

Subroutines and modules (mainly) in 68_dmft

Contains Data for DMFT modules and SCF ../66 paw/m paw dmft.F90 ../66 paw/*pawu*.F90 # input for DMFT datafordmft.F90 # Prepare Projections for DMFT psichi renormalization.F90 # Renormalize projections m matlu.F90 # Operator in the local density MATrix for LpawU General OPERator expressed in KS or local basis m oper.F90 # Green function (frequency or time dependant) m green.F90 # m self.F90 # Self energy # Interaction Hamiltonian U and J between electrons m hu.F90 m energy.F90 # Total energy dmft solve.F90 # Main routines for the DMFT Loop (called in vtorho.F90) dyson.F90 # Dyson Equation fermi green.F90 # Compute Fermi level newton, F90 Search for Fermi Level with newton method # impurity_solve.F90 # Solve impurity model hubbard one.F90 # Hubbard One solver ldau self.F90 # Compute LDA+U Self Energy qmc prep.F90 # Preparations for OMC # Print Green function local ks green.F90 spectral function.F90 # Print Spectral Function (For Hubbard I only) interfaces 68 dmft.F90 ../*/mkrho.F90... # Compute electronic density from DMFT occupations.

- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
 - LDA+DMFT and Abinit: Current status
 - LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.
 - Input variables

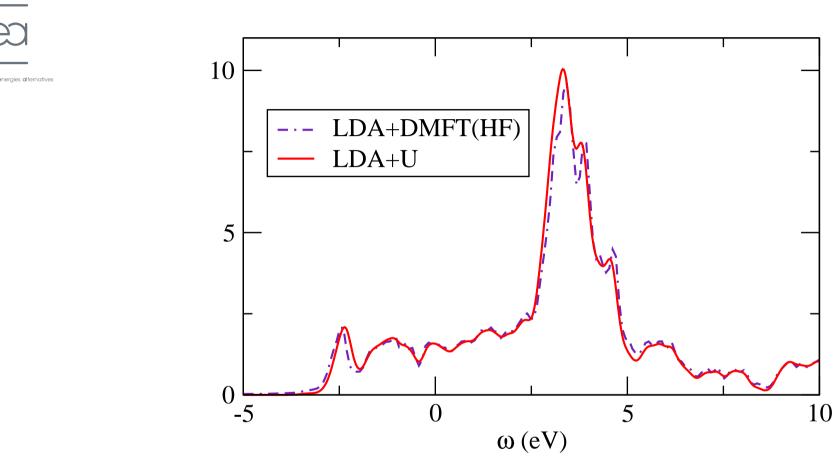
Input variables

```
\# == LDA+U
usepawu 1 # Use U Hamiltonian
dmatpuopt 3 # Choose density matrix (only for print out)
upawu 4.0 0.0 eV # Value of U for the two species
f4of2_sla 0.0 0.0 \# Value of F4/F2 to compute <m1m2|1/r|m3m4>
\# == LDA+DMFT
                # Enable DMFT
usedmft 1
dmftbandi 6
               # value of the Initial KS BAND to use
dmftbandf 12
                # value of the Final KS BAND to use
dmft nwlo 100
                # Nb of freq W in the LOg Grid (sums are parallelized)
dmft nwli 100000 # Nb of matsubara freq W (LInear Mesh)
dmft iter 10
                # nb of ITER for the dmft loop
dmftcheck 1
                # Enable CHECKs (symetry, projection, fourier)
dmft_solv 2  # choice of the SOLVer
dmft rslf 1  # Read SeLF energy from file (for restart)
dmft mxsf 0.7 # MiXing coefficient for SelF energy
dmft dc 1
               # Double Counting for DMFT
```

- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
 - LDA+DMFT and Abinit: Current status
 - LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.
 - Input variables
 - Automatic tests

Automatic tests

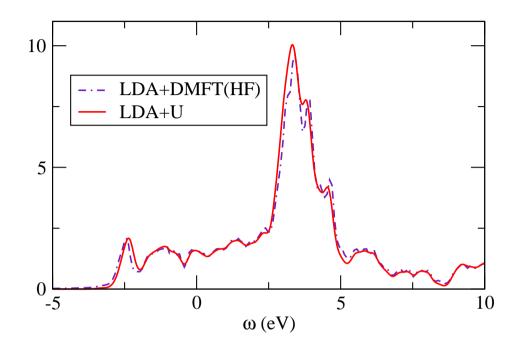
v6/t07 LDA calculation through the DMFT Loop (check)


v6/t45 DMFT calculation with U=0, and U/=0 for several solvers

v6/t46 DMFT calculation with two Ni atoms.

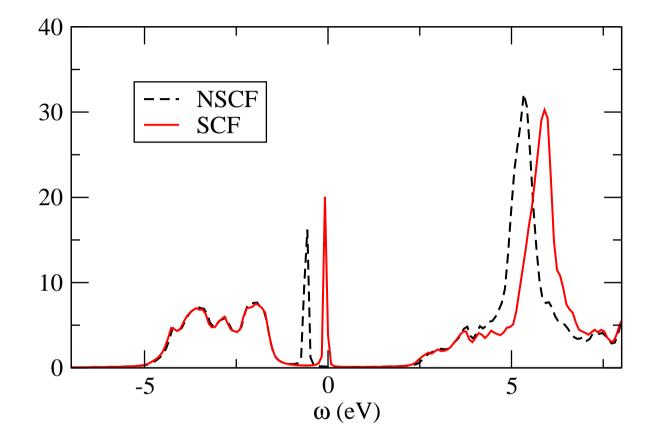
v6/t

v6/t47 DMFT calculation for f-orbitals (Gd)


- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
- LDA+DMFT and Abinit: Current status
- LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.
 - Input variables
 - Automatic tests
- Test/Check of the implementation

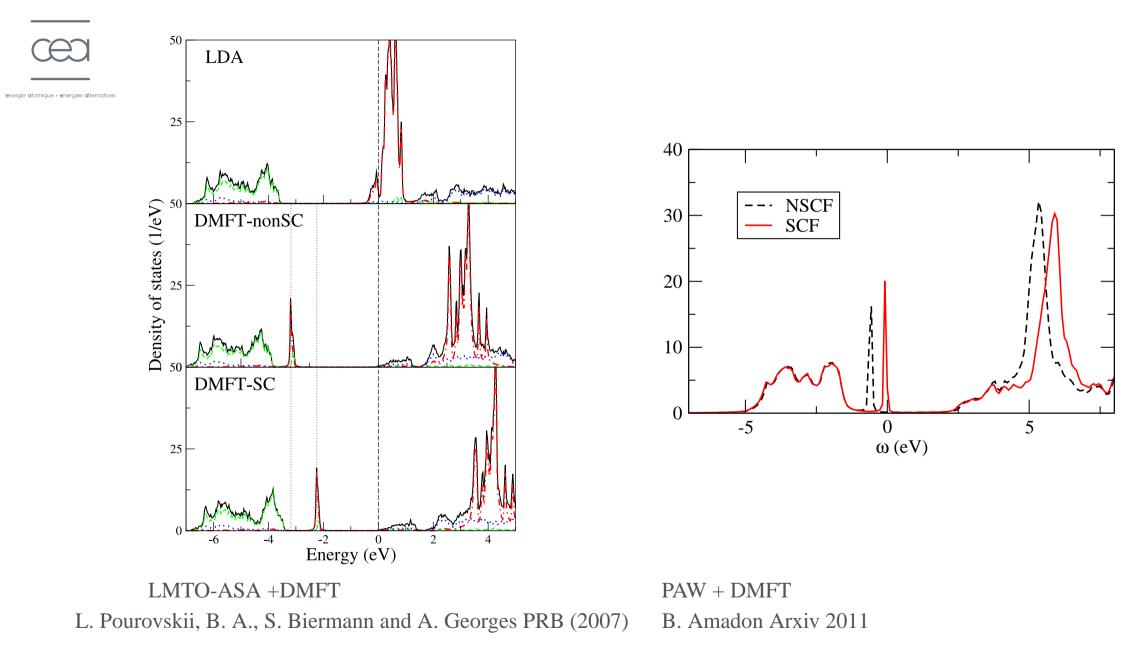
Spectral function of γ -cerium, LDA+U and LDA+DMFT (Static) With the LDA+U Self-energy, the DMFT recover the LDA+U results at convergence of the KS basis.

energie atomique • energies alternatives



	a (a.u.)	B_0 (GPa)
PAW/LDA+U	9.58	32
PAW/LDA+DMFT(HF)	9.59	31

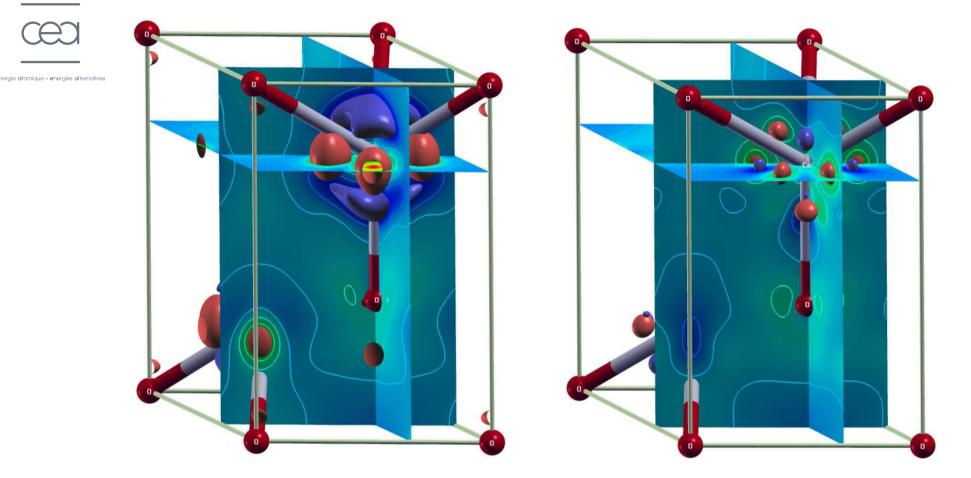
- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
- LDA+DMFT and Abinit: Current status
- LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.
 - Input variables
 - Automatic tests
- Test/Check of the implementation
- Some results



nergie atomique • energies alternatives

Spectral function of Ce_2O_3 , in LDA+DMFT (Hubbard I) with and without self-consistency. Self-consistent calculation is in better agreement with experiment (2.4 eV).

Results: Spectral function of Ce_2O_3



 energies alternatives 			
		a (A)	B_0 (Mbar)
	Exp(Barnighausen 1985)	3.89	1.11
	PAW/LDA+DMFT (H-I) NSCF	3.76	1.7
	PAW/LDA+DMFT (H-I) SCF	3.83	1.6
	ASA/LDA+DMFT(H-I) NSCF (Pourovskii 2007)	3.79	1.6
	ASA/LDA+DMFT(H-I) SCF (Pourovskii 2007)	3.81	1.6

Lattice parameter a and Bulk modulus B_0 of Ce₂O₃.

Results: Converged Electronic Density.

Difference between electronic densities computed in the LDA+U (left)/LDA+DMFT (right) and in LDA for Ce_2O_3 .

Blue (resp. green-red) area corresponds to positive (resp negative) value of the difference.

nergie atomique • energies alternatives

	a (a.u.)	B_0 (GPa)
Exp[Jeong 2004]	9.76	19/21
PAW/LDA+DMFT NSCF (H-I)	9.41	38
PAW/LDA+DMFT SCF (H-I)	9.58	36
ASA/LDA+DMFT NSCF (H-I)	9.28	50
ASA/LDA+DMFT SCF (H-I)	9.31	48

Lattice parameter a and Bulk modulus B_0 of γ Cerium according to experimental data and calculations

- Strong correlation and LDA+DMFT/+U: Reminder/Introduction
- LDA+DMFT and Abinit: Current status
- LDA+DMFT implementation in Abinit
 - Formalism
 - Practical implementation: subroutines, files, modules, link with the code.
 - Input variables
 - Automatic tests
- Test/Check of the implementation
- Some results
- Conclusion: Current status and projects.

Conclusion

- Fully self consistent implementation of LDA+DMFT in PAW.
- Spectra and total energy in Hubbard I.
- Implementation with modules: code is easier to read.
- Quantum Monte Carlo solvers are in progress (Poster of Jordan Bieder)
- Forces and Spin orbit are in project for 2011.

See details on arxiv:cond-mat/1101.0539.