The electron-phonon interaction in ABINIT

J.-P. Crocombette, X. Gonze, M. Giantomassi, M. Verstraete

2007/01/31

Why care about el-phon?

■ Phonons are the main scattering mechanism for $\mathrm{T}>0$

- Thermal properties
- Resistance
- Molecular conduction
- Superconductivity

Why care about el-phon?

\square Phonons are the main scattering mechanism for $\mathrm{T}>0$

- Thermal properties
- Resistance
- Molecular conduction
- Sunerconductivitv

Why care about el-phon?

■ Phonons are the main scattering mechanism for $\mathrm{T}>0$

- Thermal properties
- Resistance
- Molecular conduction
- Superconductivity

Why care about el-phon?

■ Phonons are the main scattering mechanism for $\mathrm{T}>0$

- Thermal properties
- Resistance
- Molecular conduction
- Superconductivity

Why care about el-phon?

■ Phonons are the main scattering mechanism for $\mathrm{T}>0$

- Thermal properties
- Resistance
- Molecular conduction
- Superconductivity

Outline

1 Basics

2 Tutorial

3 Novelties

4 Example

5 Conclusions

Migdal

- Use the Migdal approximation:

■ Separate the explicit coupling term (Frölich type Hamiltonian)

$$
\begin{gathered}
\hat{H}=\hat{H}_{e l}+\hat{H}_{p h}+\hat{H}_{e-p h} \\
\hat{H}_{e-p h}=\sum_{k q}\langle k+q| \nabla_{\alpha} V|k\rangle u_{q \alpha} c_{k+q}^{\dagger} c_{k} \\
\nabla V=\epsilon^{-1} \nabla V_{0} \quad \vec{u}_{q}=\sum_{i} \sqrt{\frac{\hbar}{2 N M \omega_{q i}}} \vec{\epsilon}_{q i}\left(a_{q i}+a_{q i}^{\dagger}\right)
\end{gathered}
$$

■ The self-energy for the phonons is in the LR screening - The self-energy for the electrons

■ Eliashberg function (weighted DOS)

Eliashberg

\square The self-energy for the phonons is in the LR screening
■ The self-energy for the electrons

$$
\Sigma_{e p}=T \int_{F S} \int_{\Omega} \frac{\alpha^{2} F\left(k, k^{\prime}, \Omega\right)}{N(0)}\left(\frac{2 \Omega}{\omega^{2}+\Omega^{2}}\right) G
$$

- Eliashberg function (weighted DOS)

Eliashberg

\square The self-energy for the phonons is in the LR screening
■ The self-energy for the electrons

$$
\Sigma_{e p}=T \int_{F S} \int_{\Omega} \frac{\alpha^{2} F\left(k, k^{\prime}, \Omega\right)}{N(0)}\left(\frac{2 \Omega}{\omega^{2}+\Omega^{2}}\right) G
$$

■ Eliashberg function (weighted DOS)

$$
\begin{gathered}
\alpha^{2} F\left(k, k^{\prime}, \Omega\right)=N(0) \sum_{j}\left|g_{k, k^{\prime}}^{j}\right|^{2} \delta\left(\omega_{q, j}-\Omega\right) \\
g_{k, k^{\prime}}^{j}=\frac{1}{\sqrt{2 M \omega_{q, j}}} \vec{\epsilon}_{q, j} \cdot\langle k| \nabla V\left|k^{\prime}\right\rangle
\end{gathered}
$$

EP quantities

■ EP coupling strength (anisotropic)

$$
\lambda\left(k, k^{\prime}, \omega\right)=\int_{0}^{\infty} d \Omega \frac{2 \Omega}{\omega^{2}+\Omega^{2}} \alpha^{2} F\left(k, k^{\prime}, \Omega\right)
$$

- EP linewidth for the phonons (from Fermi GR)

EP quantities

■ EP coupling strength (anisotropic)

$$
\lambda\left(k, k^{\prime}, \omega\right)=\int_{0}^{\infty} d \Omega \frac{2 \Omega}{\omega^{2}+\Omega^{2}} \alpha^{2} F\left(k, k^{\prime}, \Omega\right)
$$

■ EP linewidth for the phonons (from Fermi GR)

$$
\gamma_{q, j}=2 \pi \omega_{q, j} \int_{F S}\left|g_{k+q, k}^{q j}\right|^{2}
$$

Superconductivity

\square McMillan equation is popular

$$
T_{c}=\frac{\omega_{\log }}{1.2} \exp \left(\frac{-1.04(1+\lambda)}{\lambda-\mu^{\star}(1+0.62 \lambda)}\right)
$$

- where

■ or use full Eliashberg equations (isotropic is coded)

Superconductivity

■ McMillan equation is popular

$$
T_{c}=\frac{\omega_{\log }}{1.2} \exp \left(\frac{-1.04(1+\lambda)}{\lambda-\mu^{\star}(1+0.62 \lambda)}\right)
$$

- where

$$
\omega_{\log }=\exp \left(\frac{2}{\lambda} \int_{0}^{\infty} d \Omega \alpha^{2} F(\Omega) \frac{\ln (\Omega)}{\Omega}\right)
$$

Superconductivity

- McMillan equation is popular

$$
T_{c}=\frac{\omega_{\log }}{1.2} \exp \left(\frac{-1.04(1+\lambda)}{\lambda-\mu^{\star}(1+0.62 \lambda)}\right)
$$

- where

$$
\omega_{\log }=\exp \left(\frac{2}{\lambda} \int_{0}^{\infty} d \Omega \alpha^{2} F(\Omega) \frac{\ln (\Omega)}{\Omega}\right)
$$

■ or use full Eliashberg equations (isotropic is coded)

What about ABINIT and DFT?

■ Use the Born Oppenheimer approximation

- Standard LR phonons are great!

■ In linear response the coupling is byproduct of Sternheimer equation

What about ABINIT and DFT?

■ Use the Born Oppenheimer approximation
■ Standard LR phonons are great!
n In linear response the coupling is byproduct of Sternheimer equation

What about ABINIT and DFT?

■ Use the Born Oppenheimer approximation

- Standard LR phonons are great!

■ In linear response the coupling is byproduct of Sternheimer equation $\rightarrow H^{(1)}\left|\psi_{0}\right\rangle$

1 Basics

2 Tutorial

3 Novelties

4 Example

5 Conclusions

Demonstration with the tutorial

■ telphon_1 calculate GS and all the $3^{*} \mathrm{~N}_{\text {atom }}$ phonons

- telphon_2 merge the DDB files (mrgddb)
- telphon_3 merge the GKK files (mrggkk)
- telphon 4 run anaddb

Demonstration with the tutorial

■ telphon_1 calculate GS and all the $3^{*} \mathrm{~N}_{\text {atom }}$ phonons

- telphon_2 merge the DDB files (mrgddb)
- telphon_3 merge the GKK fies (mrggkk)

■ telphon_4 run anaddb

Demonstration with the tutorial

■ telphon_1 calculate GS and all the $3^{*} \mathrm{~N}_{\text {atom }}$ phonons

- telphon_2 merge the DDB files (mrgddb)

■ telphon_3 merge the GKK files (mrggkk)
■ telphon_4 run anaddb

Demonstration with the tutorial

■ telphon_1 calculate GS and all the $3^{*} \mathrm{~N}_{\text {atom }}$ phonons

- telphon_2 merge the DDB files (mrgddb)
- telphon_3 merge the GKK files (mrggkk)

■ telphon_4 run anaddb

Running anaddb I

■ Read in the matrix elements for bare perturbations

Running anaddb I

■ Read in the matrix elements for bare perturbations
■ Calculate $g_{k, k^{\prime}}^{j}$, eventually average over FS (smearing or tetrahedron)

- Complete irred \vec{q}

■ Interpolate: FT to real space but others should be tried

Running anaddb I

■ Read in the matrix elements for bare perturbations
\square Calculate $g_{k, k^{\prime}}^{j}$, eventually average over FS (smearing or tetrahedron)
■ Complete irred \vec{q}

- Interpolate: FT to real space but others should be tried

Running anaddb I

■ Read in the matrix elements for bare perturbations
\square Calculate $g_{k, k^{\prime}}^{j}$, eventually average over FS (smearing or tetrahedron)
■ Complete irred \vec{q}
■ Interpolate: FT to real space but others should be tried

Running anaddb II

■ On selected BS qpoints interpolate BS and linewidths

- On dense grid calculate $\alpha^{2} F(\Omega)$
\square Calculate moments of $\alpha^{2} F(\Omega)$
- McMillan T_{C}
- Tutorial example is
- systematically convergible
- fully featured

Running anaddb II

■ On selected BS qpoints interpolate BS and linewidths
■ On dense grid calculate $\alpha^{2} F(\Omega)$

- Calculate moments of $\alpha^{2} F(\Omega)$
- McMillan T_{c}
- Tutorial example is
- systematically convergible
- fully featured

Running anaddb II

■ On selected BS qpoints interpolate BS and linewidths
$■$ On dense grid calculate $\alpha^{2} F(\Omega)$

- Calculate moments of $\alpha^{2} F(\Omega)$
- McMillan T_{C}

■ Tutorial example is

- systematically convergible
- fully featured

Running anaddb II

■ On selected BS qpoints interpolate BS and linewidths
$■$ On dense grid calculate $\alpha^{2} F(\Omega)$

- Calculate moments of $\alpha^{2} F(\Omega)$
- McMillan T_{c}
- systematically convergible
- fully featured

Running anaddb II

■ On selected BS qpoints interpolate BS and linewidths
$■$ On dense grid calculate $\alpha^{2} F(\Omega)$

- Calculate moments of $\alpha^{2} F(\Omega)$
- McMillan T_{c}
- Tutorial example is
- systematically convergible
- fully featured

1 Basics

2 Tutorial

3 Novelties

4 Example

5 Conclusions

Goodies from Matteo Giantomassi

■ FS output

- Nesting factor
- Interpolation checks

$\square \longrightarrow$ see next talk, with examples!

Goodies from Matteo Giantomassi

■ FS output

- Nesting factor
. Interpolation checks

Goodies from Matteo Giantomassi

■ FS output

- Nesting factor

■ Interpolation checks

Goodies from Matteo Giantomassi

■ FS output

- Nesting factor

■ Interpolation checks

$\square \longrightarrow$ see next talk, with examples!

Higher moments of a2F

■ Standard λ is special casea ($\mathrm{n}=0$) of

$$
\begin{equation*}
\lambda<\omega^{n}>=2 \int_{0}^{\infty} d \Omega\left[\alpha^{2} F(\Omega)\right] \Omega^{n} \tag{1}
\end{equation*}
$$

- Added calculation of $\lambda<\omega^{n}>$ for $n=2,3,4,5$
- Used to estimate the temperature relaxation rate of hot electrons
from Allen PRL 591460 (1987)

Higher moments of a2F

■ Standard λ is special casea $(\mathrm{n}=0)$ of

$$
\begin{equation*}
\lambda<\omega^{n}>=2 \int_{0}^{\infty} d \Omega\left[\alpha^{2} F(\Omega)\right] \Omega^{n} \tag{1}
\end{equation*}
$$

■ Added calculation of $\lambda<\omega^{n}>$ for $\mathrm{n}=2,3,4,5$

- Used to estimate the temperature relaxation rate of hot electrons
from Allen PRL 591460 (1987)

Higher moments of a2F

■ Standard λ is special casea $(\mathrm{n}=0$) of

$$
\begin{equation*}
\lambda<\omega^{n}>=2 \int_{0}^{\infty} d \Omega\left[\alpha^{2} F(\Omega)\right] \Omega^{n} \tag{1}
\end{equation*}
$$

■ Added calculation of $\lambda<\omega^{n}>$ for $\mathrm{n}=2,3,4,5$
■ Used to estimate the temperature relaxation rate of hot electrons

$$
\begin{equation*}
\gamma_{T}=\frac{3 \hbar \lambda<\omega^{2}>}{\pi k_{B} T_{e}}\left(1-\frac{\hbar^{2} \lambda<\omega^{4}>}{12 \lambda<\omega^{2}>k_{B}^{2} T_{e} T_{L}}+\ldots\right) \tag{2}
\end{equation*}
$$

from Allen PRL 591460 (1987)

■ Interpolating phonons and elphon matrices separately

- Basis at random qpoint could be different
- Standard diagonalization routines give monotonically increasing order for ω and $\gamma_{q j}$

Mode separation I

■ Interpolating phonons and elphon matrices separately
■ Basis at random qpoint could be different

- Standard diagonalization routines give monotonically increasing order for ω and $\gamma_{q j}$

Mode separation I

■ Interpolating phonons and elphon matrices separately
■ Basis at random qpoint could be different

- Standard diagonalization routines give monotonically increasing order for ω and $\gamma_{q j}$

Mode separation II

Straight diag of dynamical matrix and γ matrix

Mode separation III

■ Which linewidth belongs to which phonon mode?

- Interpolate perturbations before scalar product w/ $\overrightarrow{q i}$

■ Do scalar product with interpolated phonons at final \vec{q}

Mode separation III

■ Which linewidth belongs to which phonon mode?
■ Interpolate perturbations before scalar product w/ $\epsilon_{q i}$

Mode separation III

■ Which linewidth belongs to which phonon mode?
■ Interpolate perturbations before scalar product w/ $\epsilon_{q i}$
■ Do scalar product with interpolated phonons at final \vec{q}

Phonon resistivity contribution I

■ J.-P. Crocombette implemented the calculation of the phonon contribution to the resistivity

Phonon resistivity contribution I

■ J.-P. Crocombette implemented the calculation of the phonon contribution to the resistivity

- Momentum relaxation due to scattering off phonons

Phonon resistivity contribution II

Transport spectral function $\alpha_{t r} F=\alpha_{\text {out }}^{2} F-\alpha_{\text {in }}^{2} F$

$$
\begin{aligned}
& \alpha_{\text {out }}^{2} F(\omega)=\frac{1}{N(0)\left\langle v_{x}^{2}\right\rangle} \sum_{\nu} \sum_{k k^{\prime} j^{\prime}}\left|g_{q \nu}^{k k^{\prime} j^{\prime}}\right|^{2} v_{x}(k) v_{x}(k) \delta\left(\epsilon_{k j}\right) \delta\left(\epsilon_{k^{\prime} j^{\prime}}\right) \delta\left(\omega-\omega_{q \nu}\right) \\
& \alpha_{\text {in }}^{2} F(\omega)=\frac{1}{N(0)\left\langle v_{x}^{2}\right\rangle} \sum_{\nu} \sum_{k j k^{\prime} j^{\prime}}\left|g_{q \nu}^{k k^{\prime} j^{\prime}}\right|^{2} v_{x}(k) v_{x}\left(k^{\prime}\right) \delta\left(\epsilon_{k j}\right) \delta\left(\epsilon_{k^{\prime} j^{\prime}}\right) \delta\left(\omega-\omega_{q \nu}\right)
\end{aligned}
$$

■ T dependent resistance and thermal conductivity (isotropic)

Phonon resistivity contribution II

■ Transport spectral function $\alpha_{\text {tr }} F=\alpha_{\text {out }}^{2} F-\alpha_{\text {in }}^{2} F$

$$
\begin{aligned}
& \alpha_{\text {out }}^{2} F(\omega)=\frac{1}{N(0)\left\langle v_{x}^{2}\right\rangle} \sum_{\nu} \sum_{k j k^{\prime} j^{\prime}}\left|g_{q \nu}^{k j k^{\prime} j^{\prime}}\right|^{2} v_{x}(k) v_{x}(k) \delta\left(\epsilon_{k j}\right) \delta\left(\epsilon_{k^{\prime} j^{\prime}}\right) \delta\left(\omega-\omega_{q \nu}\right) \\
& \alpha_{\text {in }}^{2} F(\omega)=\frac{1}{N(0)\left\langle v_{x}^{2}\right\rangle} \sum_{\nu} \sum_{k j k^{\prime} j^{\prime}}\left|g_{q \nu}^{k j k^{\prime} j^{\prime}}\right|^{2} v_{x}(k) v_{x}\left(k^{\prime}\right) \delta\left(\epsilon_{k j}\right) \delta\left(\epsilon_{k^{\prime} j^{\prime}}\right) \delta\left(\omega-\omega_{q \nu}\right)
\end{aligned}
$$

■ T dependent resistance and thermal conductivity (isotropic)

$$
\rho(T)=\frac{\pi \Omega_{\text {cell }} k_{B} T}{N(0)\left\langle v_{x}^{2}\right\rangle} \int_{0}^{\infty} \frac{d \omega}{\omega} \frac{x^{2}}{\sinh ^{2}(x)} \alpha_{t r} F(\omega) \quad x=\frac{\omega}{k_{B} T}
$$

Limitations/problems

- No anisotropy (yet)
- Memory use (can page to disk, but still)

■ Symmetrization: still need all $3^{*} \mathrm{~N}_{\text {atom }}$ perturbations

Limitations/problems

- No anisotropy (yet)

■ Memory use (can page to disk, but still)

- Symmetrization: still need all $3^{*} \mathrm{~N}_{\text {atom }}$ perturbations

Limitations/problems

- No anisotropy (yet)

■ Memory use (can page to disk, but still)
■ Symmetrization: still need all $3^{*} \mathrm{~N}_{\text {atom }}$ perturbations
> - Adding matrices from different kpoints \rightarrow gauge dependency

Problem if $S_{1} k$ and $S_{2} k$ have different phases - Phase disannears in

Limitations/problems

- No anisotropy (yet)

■ Memory use (can page to disk, but still)
■ Symmetrization: still need all $3^{*} \mathrm{~N}_{\text {atom }}$ perturbations
■ Phase difference between kpoints and perturbations dependency

Problem if $S_{1} k$ and $S_{2} k$ have different phases - Phase disannears in

Limitations/problems

- No anisotropy (yet)

■ Memory use (can page to disk, but still)
■ Symmetrization: still need all $3^{*} \mathrm{~N}_{\text {atom }}$ perturbations
\square Phase difference between kpoints and perturbations

- Adding matrices from different kpoints \rightarrow gauge dependency

$$
g_{k, k^{\prime}}^{q i_{3}}=g_{S_{1} k, S_{1} k^{\prime}}^{q i_{1}}+g_{S_{2} k, S_{2} k^{\prime}}^{q i_{2}}
$$

Problem if $S_{1} k$ and $S_{2} k$ have different phases

Limitations/problems

- No anisotropy (yet)

■ Memory use (can page to disk, but still)
■ Symmetrization: still need all $3^{*} \mathrm{~N}_{\text {atom }}$ perturbations
■ Phase difference between kpoints and perturbations

- Adding matrices from different kpoints \rightarrow gauge dependency

$$
g_{k, k^{\prime}}^{q j_{3}}=g_{S_{1} k, S_{1} k^{\prime}}^{q j_{1}}+g_{S_{2} k, S_{2} k^{\prime}}^{q j_{2}}
$$

Problem if $S_{1} k$ and $S_{2} k$ have different phases
\square Phase disappears in $\left|g_{k n, k^{\prime} n^{\prime}}^{q j}\right|^{2}$

1 Basics

2 Tutorial

3 Novelties

4 Example

5 Conclusions

FCC lead

- Compare Eliashberg function with litterature
- Spin-orbit coupling is essential

Outline

1 Basics

2 Tutorial

3 Novelties

4 Example

5 Conclusions

Conclusions

State of the art

1 Fully functional el-phon code. Several papers published (i.e. not just by me)

2 Potential for many extensions: superconductivity, (anisotropic) transport
3 Input for Raman spectra? Higher order or resonant Raman
4 And beyond...
5. Thank you for your attention!

State of the art

1 Fully functional el-phon code. Several papers published (i.e. not just by me)

2 Potential for many extensions: superconductivity, (anisotropic) transport

Conclusions

State of the art

1 Fully functional el-phon code. Several papers published (i.e. not just by me)

2 Potential for many extensions: superconductivity, (anisotropic) transport
3 Input for Raman spectra? Higher order or resonant Raman

Conclusions

State of the art

1 Fully functional el-phon code. Several papers published (i.e. not just by me)

2 Potential for many extensions: superconductivity, (anisotropic) transport
3 Input for Raman spectra? Higher order or resonant Raman
4 And beyond...
5 Thank you for your attention!

Conclusions

State of the art

1 Fully functional el-phon code. Several papers published (i.e. not just by me)

2 Potential for many extensions: superconductivity, (anisotropic) transport
3 Input for Raman spectra? Higher order or resonant Raman
4 And beyond...
5 Thank you for your attention!

The many flaws of Eliashberg and BO
1 For metals we have a 0 gap
2 BO never valid: use ensemble DFT, but adiabatic separation is delicate

3 Phonons are alreadv screened - Double counting of screening?

The many flaws of Eliashberg and BO
1 For metals we have a 0 gap
2 BO never valid: use ensemble DFT, but adiabatic separation is delicate
3 Phonons are already screened - Double counting of screening?

Why it shouldn't work

The many flaws of Eliashberg and BO
1 For metals we have a 0 gap
2 BO never valid: use ensemble DFT, but adiabatic separation is delicate
3 Phonons are already screened - Double counting of screening?

The many flaws of Eliashberg and BO
1 For metals we have a 0 gap
2 BO never valid: use ensemble DFT, but adiabatic separation is delicate
3 Phonons are already screened - Double counting of screening?
$4 \mu^{\star}$ fudge

Beyond BO and Eliashberg

Existing extensions of the standard model
\square Gross or VanLeeuwen formalisms for el and nucleus density matrix
> - Include e-e and e-p interactions together diagrammatically

> ■ Eliminate μ^{\star} fudge, but need complex XC functionals
> - Hard core theorists ao to hiaher than Miadal order: combined ω and \vec{q} dependencies can give important diagrams

Beyond BO and Eliashberg

Existing extensions of the standard model
\square Gross or VanLeeuwen formalisms for el and nucleus density matrix

■ Include e-e and e-p interactions together diagrammatically
Eliminate μ^{\star} fudge, but need complex XC functionals
Hard core theorists go to higher than Migdal order combined ω and \vec{q} dependencies can give important diagrams

Beyond BO and Eliashberg

Existing extensions of the standard model
■ Gross or VanLeeuwen formalisms for el and nucleus density matrix

■ Include e-e and e-p interactions together diagrammatically
■ Eliminate μ^{\star} fudge, but need complex XC functionals Hard core theorists go to higher than Migdal order:
combined ω and \vec{q} dependencies can give important diagrams

Beyond BO and Eliashberg

Existing extensions of the standard model
■ Gross or VanLeeuwen formalisms for el and nucleus density matrix

- Include e-e and e-p interactions together diagrammatically

■ Eliminate μ^{\star} fudge, but need complex XC functionals

- Hard core theorists go to higher than Migdal order: combined ω and \vec{q} dependencies can give important diagrams

