#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW

Implementation

Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

# The GW Code of ABINIT

### Present status, new features and future developments

## M. Giantomassi<sup>1</sup>

<sup>1</sup>Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Liége, 31 Jan 2007

#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

### GW

Implementation

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

## Introduction

- The Kohn Sham Band-Gap Problem
- Hedin's Equations and the GW Approximation

## **GW Implementation**

- Formalism in Frequency and Reciprocal Space
- Implementation
- Symmetries: a Useful Tool to Speed Up the Code

## 3 Future Developments

### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

#### GW Implement

Implementation

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

## Introduction

- The Kohn Sham Band-Gap Problem
- Hedin's Equations and the GW Approximation

## **GW** Implementation

- Formalism in Frequency and Reciprocal Space
- Implementation
- Symmetries: a Useful Tool to Speed Up the Code



### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

#### GW Implement

Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

## Introduction

- The Kohn Sham Band-Gap Problem
- Hedin's Equations and the GW Approximation

## **GW** Implementation

- Formalism in Frequency and Reciprocal Space
- Implementation
- Symmetries: a Useful Tool to Speed Up the Code



## Future Developments

#### Introduction

#### The Kohn Sham Band-Gap Problem

Hedin's Equations and the GW Approximation

GW Implementatior

Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments The Kohn-Sham (KS) approach to DFT is powerful and successful because:

- KS equations are easy to solve
- *E*<sub>xc</sub> is suitable for approximations

# BUT...

- (1) KS eigenvalues and eigenfunctions have no direct physical meaning
- (2) KS energies cannot be interpreted as addition/removal energies
- (3) Exact DFT gives the ionization potential, but approximated  $\hat{\nu}_{xc}$  's give poor results

Nevertheless they are used to study band structures!

#### Introduction

#### The Kohn Sham Band-Gap Problem

Hedin's Equation and the GW Approximation

### GW

Implementatior

Formalism in Frequency and Reciprocal Space

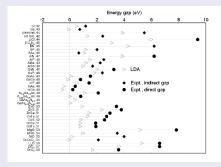
Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### It turns out that:

- KS yelds reasonable valence band dispersions but...
- KS sistematically underestimates the band gap value!



Direct and indirect LDA gaps compared to exp. values. After W. G. Aulbur *et al.* 

Better theoretically justified approaches are mandatory to study band gaps!

What about Many Body Theory?

Introduction The Kohn Sham Band-Gap Probler

Hedin's Equations and the GW Approximation

GW Implementatior

Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

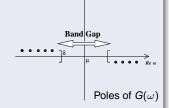
### Green's Function

$$G(1,2)\coloneqq -i\langle N|\hat{T}\hat{\psi}_{\mathcal{H}}(1)\hat{\psi}^{\dagger}_{\mathcal{H}}(2)|N
angle$$

### no spin-flip, no spin-orbit coupling

$$G^{\sigma\sigma}(\mathbf{r}_1, \mathbf{r}_2; \omega) = \sum_{\alpha} \frac{\Psi^{\sigma}_{\alpha}(\mathbf{r}_1) \Psi^{\sigma\dagger}_{\alpha}(\mathbf{r}_2)}{\omega - E^{\sigma}_{\alpha} + i\delta \text{sign}(E^{\sigma}_{\alpha} - \mu)}$$

- Poles of G(ω) are addition or removal energies (QP energies, E<sup>σ</sup><sub>α</sub>)
- No poles inside the energy gap
- Ψ<sup>σ</sup><sub>α</sub> are the quasiparticle amplitudes satisfying the Dyson equation:



Im w

$$\left[-\frac{1}{2}\Delta + \hat{v}_{H} + \hat{v}_{ext}\right]\Psi_{\alpha}^{\sigma}(\mathbf{r}_{1}) + \int \boldsymbol{\Sigma}^{\sigma\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{E}_{\alpha}^{\sigma})\Psi_{\alpha}^{\sigma}(\mathbf{r}_{2}) \,d\mathbf{r}_{2} = \boldsymbol{E}_{\alpha}^{\sigma}\Psi_{\alpha}^{\sigma}(\mathbf{r}_{1})$$

 $\Sigma^{\sigma\sigma}$  is a non-Hermitian, nonlocal and energy dependent operator (Self-Energy)

#### Introduction The Kohn Sham Band-Gap Probler

Hedin's Equations and the GW Approximation

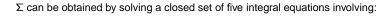
GW Implementation Formalism in

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

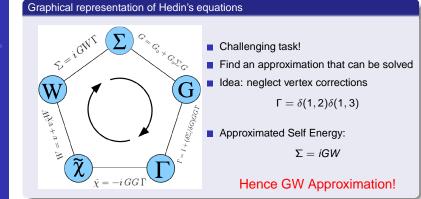
Future Developments



- The Green's functions G
- The screened interaction  $W = e^{-1}v$

The irreducible polarizability  $\tilde{\chi} = \frac{\delta n}{\delta V_{\text{tot}}}$ 

The vertex function F



#### Introduction The Kohn Sham Band-Gap Problem

Hedin's Equations and the GW Approximation

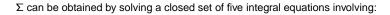
GW Implementation

Frequency and Reciprocal Space

Implementation

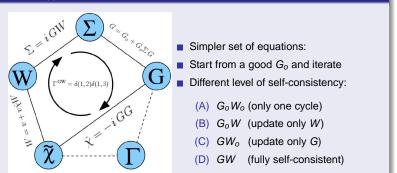
Symmetries: a Useful Tool to Speed Up the Code

Future Developments



- The Green's functions *G*
- The screened interaction  $W = e^{-1}v$
- The irreducible polarizability  $\tilde{\chi} = \frac{\delta n}{\delta v_{\text{tot}}}$
- The vertex function F

### The GW Approximation



#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW Implementatio

Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### GW Self-Energy in $\omega$ -space:

$$\Sigma_{\rm GW}^{\sigma\sigma}(\mathbf{r}_1,\mathbf{r}_2;\omega) = \frac{i}{2\pi} \int e^{i\omega'\delta} \mathbf{G}^{\sigma\sigma}(\mathbf{r}_1,\mathbf{r}_2;\omega+\omega') W(\mathbf{r}_1,\mathbf{r}_2;\omega') \,\mathrm{d}\omega'$$

### First Iteration $(G_o W_o)$

 $G^{\sigma\sigma}$  is approximated by the independent particle  $G_o^{\sigma\sigma}$  (the Green's function of the non-interacting KS system)

$$G_{o}^{\sigma\sigma}(\mathbf{r}_{1},\mathbf{r}_{2};\omega) = \sum_{\alpha} \frac{\psi_{\alpha}^{\sigma}(\mathbf{r}_{1})\psi_{\alpha}^{\sigma\dagger}(\mathbf{r}_{2})}{\omega - \epsilon_{\alpha}^{\sigma} + i\delta \text{sign}(\epsilon_{\alpha}^{\sigma} - \mu)}$$

with:

$$\hat{H}_{\mathsf{KS}}\,\psi^{\sigma}_{\alpha}=\epsilon^{\sigma}_{\alpha}\psi^{\sigma}_{\alpha}.$$

Ingredients: KS wavefunctions and eigenvalues

#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW Implementation

Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### GW Self-Energy in $\omega$ -space:

$$\Sigma_{\rm GW}^{\sigma\sigma}(\mathbf{r}_1,\mathbf{r}_2;\omega) = \frac{i}{2\pi} \int e^{i\omega'\delta} \mathbf{G}^{\sigma\sigma}(\mathbf{r}_1,\mathbf{r}_2;\omega+\omega') W(\mathbf{r}_1,\mathbf{r}_2;\omega') \,\mathrm{d}\omega'$$

### First Iteration $(G_o W_o)$

W is approximated by the RPA expression:

$$W_{\mathbf{G}_{1}\mathbf{G}_{2}}(\mathbf{q},\omega) = \epsilon_{\mathbf{G}_{1}\mathbf{G}_{2}}^{-1} v_{\mathbf{G}_{2}}(\mathbf{q}), \quad \text{where} \quad \epsilon_{\mathbf{G}_{1}\mathbf{G}_{2}}^{\mathsf{RPA}}(\mathbf{q},\omega) = \delta_{\mathbf{G}_{1}\mathbf{G}_{2}} - v_{\mathbf{G}_{1}}(\mathbf{q})\chi_{\mathbf{G}_{1}\mathbf{G}_{2}}^{(0)}(\mathbf{q},\omega)$$

and

$$\chi_{\mathbf{G}_{1}\mathbf{G}_{2}}^{(0)}(\mathbf{q},\omega) = \frac{1}{V} \sum_{\substack{\mathbf{k}\sigma\\b_{1}b_{2}}} \frac{\left[f(\epsilon_{\mathbf{k}-\mathbf{q}b_{2}}^{\sigma}) - f(\epsilon_{\mathbf{k}b_{1}}^{\sigma})\right] M_{\mathbf{G}_{1}}^{b_{2}b_{1}}(\mathbf{q},\mathbf{k},\sigma) M_{\mathbf{G}_{2}}^{b_{2}b_{1}^{\dagger}}(\mathbf{q},\mathbf{k},\sigma)}{\omega + \epsilon_{\mathbf{k}-\mathbf{q}b_{2}}^{\sigma} - \epsilon_{\mathbf{k}b_{1}}^{\sigma} - i\delta \text{sign}(\epsilon_{\mathbf{k}-\mathbf{q}b_{2}}^{\sigma} - \epsilon_{\mathbf{k}b_{1}}^{\sigma})}$$

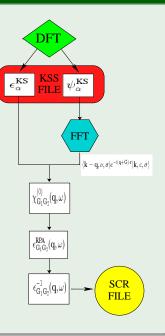
$$M^{
u c}_{\mathbf{G}}(\mathbf{q},\mathbf{k},\sigma) := \langle \mathbf{k} - \mathbf{q}, 
u, \sigma | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \mathbf{k}, c, \sigma 
angle$$

### Ingredients: KS wavefunctions, eigenvalues and occupations numbers f

### Schematic representation of a RPA calculation

- Introduction
- The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation
- GW Implementatio
- Formalism in Frequency and Reciprocal Space
- Implementation
- Symmetries: a Useful Tool to Speed Up the Code
- Future Developments

- (1) FFT to evaluate  $M_{\mathbf{G}}^{\nu c}(\mathbf{q}, \mathbf{k}, \sigma)$ 
  - Efficient
  - **Can use less PW's in**  $|b_1 \mathbf{k} \sigma \rangle$
- (2) Evaluation of  $\chi^{(0)}_{\mathbf{G}_{1}\mathbf{G}_{2}}(\mathbf{q},\omega)$  scales as  $N_{\sigma} \cdot N_{\nu} \cdot N_{c} \cdot N_{\omega} \cdot N_{\mathbf{k}}$ 
  - **Time consuming (** $N_c \sim 10^2$ **)**
  - Parallelized over k's in the BZ
  - Parallelized over N<sub>c</sub> (v5.3.0)
- (3) Inversion of  $\epsilon^{\text{RPA}}$ 
  - Done by a sigle CPU
  - Could be parallelized



#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

#### GW Implementatio

Formalism in Frequency and Reciprocal Space

#### Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### Oscillator matrix elements

$$M^{\nu c}_{\mathbf{G}}(\mathbf{q}, \mathbf{k}, \sigma) := \langle \mathbf{k} - \mathbf{q}, \nu, \sigma | e^{-i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | \mathbf{k}, c, \sigma \rangle$$

### Matrix elements of $\Sigma_x^{\sigma\sigma}$ (From the static part of W)

$$\langle b_1 \mathbf{k} \, \sigma | \Sigma_{\mathbf{x}}^{\sigma \sigma} | b_2 \mathbf{k} \, \sigma \rangle = -\frac{4\pi}{V} \sum_{\nu}^{\text{occ}} \sum_{\mathbf{q} \, \mathbf{G}} \frac{M_{\mathbf{G}}^{\nu b_1 \dagger}(\mathbf{k}, \mathbf{q}, \sigma) M_{\mathbf{G}}^{\nu b_2}(\mathbf{k}, \mathbf{q}, \sigma)}{|\mathbf{q} + \mathbf{G}|^2}$$

## Matrix elements of $\Sigma_c^{\sigma\sigma}(\omega)$ (From the frequency dependent part of W)

$$\langle b_{1}\mathbf{k}\sigma|\Sigma_{c}^{\sigma\sigma}(\omega)|b_{2}\mathbf{k}\sigma\rangle = \sum_{\substack{\mathbf{q}\\\mathbf{G}_{1}\mathbf{G}_{2}}}\sum_{n}\frac{M_{\mathbf{G}_{1}}^{nb_{1}\dagger}(\mathbf{q},\mathbf{k},\sigma)M_{\mathbf{G}_{2}}^{nb_{2}}(\mathbf{q},\mathbf{k},\sigma)}{|\mathbf{q}+\mathbf{G}_{1}||\mathbf{q}+\mathbf{G}_{2}|}\cdot J_{\mathbf{G}_{1}\mathbf{G}_{2}}^{n,\mathbf{k}-\mathbf{q}}(\mathbf{q},\omega,\sigma)$$

Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

### GW Implementati

Formalism in Frequency and Reciprocal Space

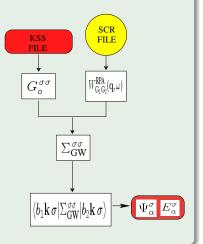
### Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### Schematic representation of a $\Sigma$ calculation

- Only Σ matrix elements are calculated
  - Save memory and CPU
  - But it could be useful to have Σ and/or G!
- (2)  $\Sigma_{x}^{\sigma\sigma}$  scales as  $N_{\nu} \cdot N_{\mathbf{G}} \cdot N_{\mathbf{q}}$ 
  - $\Sigma_c^{\sigma\sigma}$  scales as  $(N_
    u + N_c) \cdot N_{f G}^2 \cdot N_{f q}$ 
    - Parallelized over q in the BZ
    - Parallelized over  $(N_{\nu} + N_c)$



Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW Implementation Formalism in Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments Parallelization works well, but we are still summing over the full BZ Symmetries can be used to speed up the code...

### Definitions:

- A symmetry operation  $\hat{S}_t$  consists of:
  - (1) a proper or improper rotation S
  - (2) a fractional translation t
- We adopt the convention:  $\hat{S} \psi(\mathbf{r}) \coloneqq \psi(S^{-1}(\mathbf{r}))$
- **S** is an element of the little group  $L_q$  if Sq = q
- IBZ<sub>q</sub> is the irreducible wedge defined by L<sub>q</sub>
- If  $\mathbf{t} = \overrightarrow{\mathbf{0}}$  the symmetry operation is called symmorphic

Only symmorphic operations will be treated

#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW Implementation

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### Symmetry properties:

If n is not degenerate

 $\psi_{n\mathbf{S}\mathbf{k}}(\mathbf{r}) = \psi_{n\mathbf{k}}(\mathbf{S}^{-1}\mathbf{r})$ 

If *n* belongs to the degenerate subspace  $C_n$ 

$$\psi_{n\mathbf{S}\mathbf{k}}(\mathbf{r}) = \sum_{\alpha}^{C_n} D_{n\alpha}(\mathbf{S}) \psi_{\alpha\mathbf{k}}(\mathbf{S}^{-1}\mathbf{r})$$

where  $D_{n\alpha}(S)$  is the unitary transformation associated with *S* 

Using these properties in the definition of  $M_{\mathbf{G}}^{\nu c}(\mathbf{q}, \mathbf{k})$ , we obtain:

| If S $\mathbf{q} = \mathbf{q}$ , $ u$ and $c$ are not degenerate                                                | If $S\mathbf{q} = \mathbf{q}$ and only $\nu$ is degenerate                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $M_{\mathbf{G}}^{\nu c}(\mathbf{q},\mathbf{Sk}) = M_{\mathbf{S}^{-1}\mathbf{G}}^{\nu c}(\mathbf{q},\mathbf{k})$ | $M^{\nu c}_{\mathbf{G}}(\mathbf{q}, \mathbf{S}\mathbf{k}) = \sum_{\alpha}^{\mathcal{C}_{\nu}} D^{\dagger}_{\nu \alpha}(S) M^{\alpha c}_{S^{-1}\mathbf{G}}(\mathbf{q}, \mathbf{k})$ |

Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW Implementation Formalism in

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

# Symmetrization in $\chi^{(0)}_{\mathbf{G}_{1}\mathbf{G}_{2}}(\mathbf{q},\omega)$

The external wavevector  ${f q}$  defines the irreducible wedge for the integration

Schematically:

$$\chi^{(0)}_{\mathbf{G}_{1}\mathbf{G}_{2}}(\mathbf{q},\omega) \propto \sum_{\mathbf{k}}^{\mathsf{BZ}} \sum_{\substack{\sigma \\ b_{1}, b_{2}}} \mathcal{F}_{\mathbf{G}_{1}\mathbf{G}_{2}} \Longrightarrow \sum_{\mathbf{k}}^{\mathsf{IBZ}_{\mathbf{q}}} \mathcal{W}(\mathbf{k}) \sum_{\substack{\sigma \\ b_{1}, b_{2}}} \tilde{\mathcal{F}}_{\mathbf{G}_{1}\mathbf{G}_{2}}$$

where:

 $w(\mathbf{k})$  are appropriate weights for each point in IBZ<sub>q</sub>  $\tilde{F}_{\mathbf{G}_{1}\mathbf{G}_{2}}$  is the symmetrized expression corresponding to  $F_{\mathbf{G}_{1}\mathbf{G}_{2}}$ 

The use of symmetries reduces the effort for high-symmetric q-points

No need to take into account the transformation D<sub>αβ</sub>(S) (matrices D<sub>αβ</sub>(S) drop out of the final expression)

#### Introduction

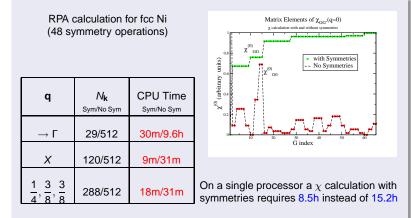
The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

#### GW Implemer

Formalism in Frequency and Reciprocal Space

#### Implementation

- Symmetries: a Useful Tool to Speed Up the Code
- Future Developments



- Symmetrization decreases the CPU time but not the memory
- Why is  $\mathbf{q} \to \Gamma$  the most time consuming point?

#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

### GW Implementation

Frequency and Reciprocal Space

Symmetries:

a Useful Tool to Speed Up the Code

Future Developments

Correct evaluation of 
$$\lim_{\mathbf{q}\to 0} \chi^{(0)}_{\mathbf{G}0}(\mathbf{q},\omega)$$
 and  $\lim_{\mathbf{q}\to 0} \chi^{(0)}_{00}(\mathbf{q},\omega)$  requires:

$$V_{\mathbf{G}_{1}\mathbf{G}_{2}}(\mathbf{k}) \coloneqq \left( \nabla_{\mathbf{k}+\mathbf{G}_{1}} + \nabla_{\mathbf{k}+\mathbf{G}_{2}} \right) \langle \mathbf{k}+\mathbf{G}_{1} | \hat{V}_{\mathsf{n} \mathsf{l}} | \mathbf{k}+\mathbf{G}_{2} \rangle$$

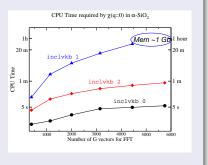
### Three approaches according to inclvkb:

•  $0 \Longrightarrow$  do not include  $V_{\mathbf{G}_1\mathbf{G}_2}(\mathbf{k})$ 

- 1 ⇒ use Legendre polymomials:
  - (i)  $V_{\mathbf{G}_1\mathbf{G}_2}(\mathbf{k})$  cannot be factorized
  - (ii) CPU and memory  $\propto N_{\rm G}^2$
- **2**  $\implies$  use spherical harmonics:

(i) 
$$V_{\mathbf{G}_1\mathbf{G}_2}(\mathbf{k}) = \tilde{V}_{\mathbf{G}_1}(\mathbf{k})\tilde{V}_{\mathbf{G}_2}(\mathbf{k})$$

(ii) CPU and memory  $\propto \gamma \cdot N_{\rm G}$ 



### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

### GW Implementation Formalism in

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### Symmetrization in $\Sigma$

The external wavevector k defines the irreducible wedge for the integration Schematically:

$$\langle b_1 \mathbf{k} \, \sigma | \Sigma^{\sigma \sigma} | b_1 \mathbf{k} \, \sigma \rangle \propto \sum_{\mathbf{q}}^{\mathsf{BZ}} \sum_{\substack{\mathbf{n} \\ \mathbf{G}_1 \mathbf{G}_2}} F \Longrightarrow \sum_{\mathbf{q}}^{\mathsf{IBZ}_{\mathbf{k}}} w(\mathbf{q}) \sum_{\substack{\mathbf{n} \\ \mathbf{G}_1 \mathbf{G}_2}} \tilde{F}$$

If  $b_1$  is degenerate then  $D_{b_1\alpha}(S)$  should be included in the equations

A naive symmetrization causes removals of degeneracies

# Solution:

Include all the degenerate states in the  $\boldsymbol{\Sigma}$  calculation and average QP energies

But what about the off-diagonal elements of  $\Sigma$ ?

#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

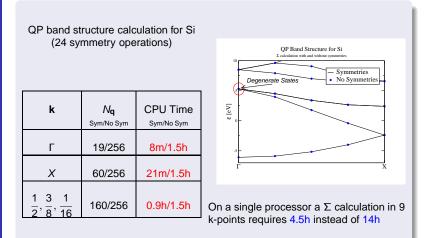
### GW Implementatio

Frequency and Reciprocal Space

Implementation

Symmetries: a Useful Tool to Speed Up the Code

Future Developments



Symmetrization decreases the CPU time, but not the memory allocated

Small drawback: degenerate states must be included in the  $\boldsymbol{\Sigma}$  calculation

#### Introduction

The Kohn Sham Band-Gap Problem Hedin's Equations and the GW Approximation

GW Implementatior Formalism in Frequency and

Reciprocal Spac

Symmetries: a Useful Tool to Speed Up the Code

Future Developments

### Future Developments

- (1) Inclusion of Umklapp processes: Sq = q + G
  - further reduction of k- and q-points in the sums
- (2) Treatment of non-symmorphic operations to:
  - reduce memory
  - improve the symmetrization
- (3) Symmetries + Different levels of parallelization:
  - k-points and spin
  - bands and spin
- (4) Better algorithms to compute  $\chi^{(0)}_{\mathbf{G}_1\mathbf{G}_2}(\mathbf{q},\omega)$