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.Calculating the band structures of solids

Density Functional Theory

Density Functional Theory (DFT) is the most used method for
electronic calculations in solids.

→ Kohn-Sham equations introduce one-electron energies εi[
−∇

2

2

+ vnuclei(r) +

∫
dr′ ρ(r′)

|r − r′|
+ vxc [ρ](r)

]
φi (r) = εiφi (r)

Can we use the energies εi as a band structure ?

× No, for theoretical reasons

× No, for practical grounds
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No! due to practical results

Band gaps of semiconductors

experimental gap (eV)

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006).



.Calculating the band structures of solids

Electronic excitations through Green’s functions

Alternative framework: Green’s function

DFT Kohn-Sham

ρ(r)

l
vxc [ρ](r)

↓
εKS
i

Green’s functions

G (r, r′, ω)

l
Σxc [G ](r, r′, ω)

↓
εQP
i



.Calculating the band structures of solids

Approximations for the self-energy

Systematic way to produce approximated Σ:

Feynman diagrams

Hedin’s equations (1965).

Hartree-Fock Approximation

Σ =

v

G

GW Approximation
-1εW =      v

GΣ =



.Calculating the band structures of solids

Yes! GW band gaps

Band gaps of semiconductors

experimental gap (eV)

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006).
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.GW goes wrong with Cu2O

Cuprous oxide Cu2O: a simple solid?

Cu 3d10 shell

semiconductor
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.GW goes wrong with Cu2O

Cu2O goes wrong!

Cu 3d10 shell

semiconductor

non-magnetic

Band gaps

0.55 eV
1.34 eV 1.23 eV

1.51 eV

Band gap 1st optical transition

Expt.
LDA
GW

2.17 eV
2.55 eV



.GW goes wrong with Cu2O

Ingredients of the GW calculation

Since the mid-80’s,

φ  , εLDA LDA

DFT
LDA

φ  , εLDA LDA

GLDA

W

Σ= iGW

RPA

εGW

Hypothesis :
φLDA ≈ φGW

εLDA ≈ εGW
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Getting rid of LDA

Looking for a better starting point

φ  , εLDA LDA

LDA

φ  , εLDA LDA

DFT
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φ  , εGW GW

GW
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.Self-consistent GW for simple solids

Quasiparticle self-consistent GW

DFT
LDA

φ  , ε

G

W

Σ= iGW εGW

φGW

GW GW

φ  , εGW GW

GW

RPA

based on Faleev, van Schilfgaarde and Kotani, PRL 93, 126406 (2004).

In principle,
〈φi |Σ(εGW

j )|φj〉

Approximation:

1

2
<

[
〈φi |ΣGW (εGW

i )|φj〉+ 〈φi |ΣGW (εGW
j )|φj〉

]
→ orthogonal wavefunctions



.Self-consistent GW for simple solids

LDA states as a basis set?

|φGW
ki 〉 =

N∑
j=1

ckij |φLDA
kj 〉
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.Self-consistent GW for simple solids

Band width of a simple metal

Aluminum

Γ L
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Expt.

Free electron  11.65 eV

scGW             10.58 eV
LDA              11.06 eV

Expt.              10.6  eV

F. Bruneval et al. PRB 74, 045102 (2006).
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Band gap of a semiconductor

Silicon

L Γ X
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.Self-consistent GW for simple solids

Band gap of an insulator

Solid argon

8.20 eV

12.98 eV
14.84 eV

LDA GW scGW Exp.

14.20 eV
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Density and wavefunctions

Bulk silicon
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F. Bruneval et al. PRB 74, 045102 (2006).
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Density and wavefunctions

Bulk silicon

Difference
between GW and LDA



.Self-consistent GW for simple solids

Density and wavefunctions

Bulk silicon

1st conduction state

( 1 1 1 ) direction

| φ
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.Self-consistent GW for simple solids

Other materials

from M. van Schilfgaarde et al., PRL 96 226402 (2006).
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.Cu2O needs self-consistent GW

GW density Cu2O

Difference of the density GW - LDA



.Cu2O needs self-consistent GW

Valence wavefunctions

( 1 1 1 ) direction

LDA
sc GW

CuO

Γ′25 valence states
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.Cu2O needs self-consistent GW

Valence band structure of Cu2O

ARPES: APE Beamline, Elettra, Trieste (Italy).



.Cu2O needs self-consistent GW

Band gaps of Cu2O

0.55 eV
1.34 eV 1.23 eV

1.51 eV
1.97 eV

2.27 eV

Band gap 1st optical transition

Expt.
LDA
GW
sc GW

Self-consistent GW slightly underestimates



.Cu2O needs self-consistent GW

Optical absorption coefficient

Excitons through the Bethe-Salpeter equation with the
self-consistent GW eigenvalues and GW screening
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Optical absorption coefficient
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.Conclusions

Summary
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.Conclusions

A new state-of-art?

Self-consistent GW is cumbersome.

Apply the self-consistent method to nasty cases
= Kohn-Sham DFT is qualitatively wrong.

semiconductors predicted metallic within LDA: InAs, InSb
junctions of semiconductors where the alignment of the bands
matters.
finite systems where the LUMO is not correct in LDA: SiH4

complex oxides where LDA is really off.

scGW : available in

BSE:



.Extra

Effect of semicore on GW

Semicore: Cu 3s,3p
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Valence states of Cu2O
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Theory & Photoemission

Hartree-Fock Approximation

Σ =

v

G

hν

E kin

GW Approximation
-1εW =      v

GΣ =
hν

E kin
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No! due to a theoretical argument

binding energy: εi = hν − Ekin − Φ

hν

E kin

Density of States

-20

-10

0

10

20

E
ne

rg
y 

 (
eV

)

h ν E kin

Φ

ε
i

→ Excited state property
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