Self-Consistent *GW* Electronic Structure of Solids

Fabien Bruneval, Nathalie Vast, and Lucia Reining

Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau, France Dept. of Chemistry and Applied Biosciences, ETH-Zurich, Lugano, Switzerland

Liège, 31 January 2007

1 Calculating the band structures of solids

- 2 GW goes wrong with Cu₂O
- 3 Self-consistent *GW* for simple solids
- 4 Cu_2O needs self-consistent *GW*

Calculating the band structures of solids

Outline

1 Calculating the band structures of solids

- 2 GW goes wrong with Cu₂O
- 3 Self-consistent GW for simple solids
- 4 Cu₂O needs self-consistent GW

5 Conclusions

Density Functional Theory

Density Functional Theory (DFT) is the most used method for electronic calculations in solids.

ightarrow Kohn-Sham equations introduce one-electron energies ϵ_i

$$\left[-\frac{\nabla^2}{2} + v_{\text{nuclei}}(\mathbf{r}) + \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}[\rho](\mathbf{r})\right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

Can we use the energies ϵ_i as a band structure ?

- imes No, for theoretical reasons
- $\times\,$ No, for practical grounds

Density Functional Theory

Density Functional Theory (DFT) is the most used method for electronic calculations in solids.

ightarrow Kohn-Sham equations introduce one-electron energies ϵ_i

$$\left[-\frac{\nabla^2}{2} + v_{\text{nuclei}}(\mathbf{r}) + \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}[\rho](\mathbf{r})\right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

Can we use the energies ϵ_i as a band structure ?

- \times No, for theoretical reasons
- \times No, for practical grounds

Calculating the band structures of solids

No! due to practical results

Band gaps of semiconductors

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006).

Calculating the band structures of solids

Electronic excitations through Green's functions

Alternative framework: Green's function

Approximations for the self-energy

Systematic way to produce approximated Σ :

- Feynman diagrams
- Hedin's equations (1965).

Yes! *GW* band gaps

Band gaps of semiconductors

adapted from M. van Schilfgaarde et al., PRL 96 226402 (2006).

Outline

Calculating the band structures of solids

2 GW goes wrong with Cu₂O

3 Self-consistent GW for simple solids

4 Cu₂O needs self-consistent GW

5 Conclusions

Cuprous oxide Cu₂O: a simple solid?

Expt: S. Brahms et al., Phys. Lett. 22, 31 (1966).

Cuprous oxide Cu₂O: a simple solid?

Expt. BSE (arb. units) 8 E_B, E • Cu $3d^{10}$ shell semiconductor non-magnetic 3 5 6 ω (eV)

Expt: S. Brahms et al., Phys. Lett. 22, 31 (1966).

Optical Absorption

Cu₂O goes wrong!

Ingredients of the GW calculation

Since the mid-80's,

 $\begin{aligned} \phi^{\tilde{\mathsf{LDA}}} &\approx \phi^{GW} \\ \epsilon^{\mathsf{LDA}} &\approx \epsilon^{GW} \end{aligned}$

Getting rid of LDA

Looking for a better starting point

GW goes wrong with Cu₂O

Getting rid of LDA

Looking for a better starting point

Outline

Calculating the band structures of solids

OW goes wrong with Cu₂O

3 Self-consistent GW for simple solids

4 Cu₂O needs self-consistent GW

5 Conclusions

Quasiparticle self-consistent GW

based on Faleev, van Schilfgaarde and Kotani, PRL **93**, 126406 (2004). In principle,

$$\langle \phi_i | \Sigma(\epsilon_j^{GW}) | \phi_j \rangle$$

Approximation:

$$\frac{1}{2}\Re\left[\langle\phi_i|\Sigma^{GW}(\epsilon_i^{GW})|\phi_j\rangle+\langle\phi_i|\Sigma^{GW}(\epsilon_j^{GW})|\phi_j\rangle\right]$$

\rightarrow orthogonal wavefunctions

LDA states as a basis set?

$$|\phi_{\mathbf{k}i}^{GW}
angle = \sum_{j=1}^{N} c_{\mathbf{k}ij} |\phi_{\mathbf{k}j}^{\mathsf{LDA}}
angle$$

LDA states as a basis set?

$$|\phi_{\mathbf{k}i}^{GW}\rangle = \sum_{j=1}^{n} c_{\mathbf{k}ij} |\phi_{\mathbf{k}j}^{\text{LDA}}\rangle$$

Ν

(110) direction

LDA states as a basis set?

A conduction band within Hartree-Fock in Solid argon

LDA states as a basis set?

A conduction band within Hartree-Fock in Solid argon

Band width of a simple metal

Band gap of a semiconductor

Silicon

Band gap of an insulator

Density and wavefunctions

Electronic density

Density and wavefunctions

Difference between *GW* and **LDA**

Bulk silicon

Density and wavefunctions

Other materials

from M. van Schilfgaarde et al., PRL 96 226402 (2006).

Outline

Calculating the band structures of solids

- 2 GW goes wrong with Cu₂O
- 3 Self-consistent GW for simple solids
- 4 Cu_2O needs self-consistent GW

5 Conclusions

 Cu_2O needs self-consistent GW

GW density Cu₂O

Difference of the density GW - LDA

 Cu_2O needs self-consistent GW

Valence wavefunctions

 Cu_2O needs self-consistent GW

Valence band structure of Cu₂O

ARPES: APE Beamline, Elettra, Trieste (Italy).

Cu₂O needs self-consistent GW

Band gaps of Cu₂O

• Self-consistent GW slightly underestimates

Cu₂O needs self-consistent GW

Optical absorption coefficient

Excitons through the Bethe-Salpeter equation with the self-consistent *GW* eigenvalues and *GW* screening

F. Bruneval et al., PRL 97, 267601 (2006).

Cu₂O needs self-consistent GW

Optical absorption coefficient

Excitons through the Bethe-Salpeter equation with the self-consistent *GW* eigenvalues and *GW* screening

F. Bruneval et al., PRL 97, 267601 (2006).

Calculating the band structures of solids

- 2 GW goes wrong with Cu₂O
- Self-consistent GW for simple solids
- 4 Cu₂O needs self-consistent GW

Conclusions

Summary

Conclusions

Summary

A new state-of-art?

- Self-consistent *GW* is **cumbersome**.
- Apply the self-consistent method to nasty cases
 - = Kohn-Sham DFT is qualitatively wrong.
 - semiconductors predicted metallic within LDA: InAs, InSb
 - junctions of semiconductors where the alignment of the bands matters.
 - $\bullet\,$ finite systems where the LUMO is not correct in LDA: SiH_4
 - complex oxides where LDA is really off.

• scGW: available in

Effect of semicore on GW

Semicore: Cu 3s,3p

Valence states of Cu₂O

Extra

Theory & Photoemission

Extra

No! due to a theoretical argument

\rightarrow Excited state property