The 3rd International ABINIT Developer Workshop 2007 (Liège, Belgium (Jan/30/2007))

Virtual Crystal Approximation for Heterovalent Ions

(MM, Uheda, Kijima, ICTMC-15(Kyoto), Physica Status Solidi(a) 203, 2705 (2006))

Mitsubishi Chemical Group Science & Technology Research Center Masayoshi Mikami

三上 昌義

Acknowledgments:

Dr. Shinichiro Nakamura, Dr. Kyota Uheda, Dr. Naoto Kijima (MCRC)

MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGY RESEARCH CENTER, INC.

<u>1. Background:</u>

<u>CaAlSiN</u>₃:Eu²⁺ (efficient red phosphor for white-LED) \rightarrow Al/Si occupies the same crys. site with occ.=0.5 each calculations with Al/Si-ordered models & VCA

<u>2. Methodology</u>

DFT-GGA, Virtual Crystal Approximation (VCA)

3. Results & Conclusion

CASN: Geometry optimization, bandstructure/DOS => OK!

<u>4. Further Tests</u>

How about other such ionic crystals ? (e.g. gehlenite, celcian, Al-doped Si_2N_2O , ...)

LED for next generation illumination

(http://en.wikipedia.org/wiki/LED etc.) "Convenient Truth"

Business

white LEDs : LED chip and phosphors

Present type: Blue-LED + yellow phosphor Next generation: High color rendering types InGaN Blue-LED + yellow&red E Near UV-LED + blue&green&red Blue-LED + green&red

from "www.lightemittingdiodes.org"

Example of color rendition

B+**G**+**R** = natural White B+Y = pseudo-White (lacking **R**)

 Clear differences in the color rendition can be seen in this August Renoir painting (left-hand side: high CRI; right-hand side: low CRI)

www.LIGHT EMITTING DIODES.org

© E. F. Schubert

Red phopshors for white LED : $M_2Si_5N_8:Eu^{2+}$, *M*AlSiN₃:Eu²⁺, ... (*M*=alkaline earth elements)

図 8.3.3 世界初の LED を用いた外科手術 **Distinguish between** *artery and vein !!* MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGY RESEARCH CENTER. INC.

Green and red phosphors for white-LEDs presented by Mitsubishi Chemical Corp.

"The accomplishment of white LEDs with high color rendering, Ra293%"

"High luminance and stability"

"Patent free"

Ra: General color rendering index

1. Background Business Al/Si-disorder v.s. Pauling 2nd crystal rule hrough nnovation **Efficient host (phosphor/pigment)** Al/Si=1/1 (XRD, e-beam diffraction) $CaAlSiN_3$ (#36 (*Cmc*2₁)) Al³⁺/Si⁴⁺: 4-coord. \rightarrow Z^{3.5+} $Ca^{2+}: 5-coord.$ N^[2]: 2-coord., N^[3]: 3-coord. Pauling 2nd Crystal Rule (PSCR): $V_{anion} = -\sum V_{cation} / C_{cation}$ $N^{[2]}$: -(3.5/4 × 2+2/5 × 3)= -2.95 [3] $N^{[3]}$: -(3.5/4 × 3+2/5)= -3.025 **Approximately satisfies the PSCR!** (N.B.) Si_2N_2O (#36 ($Cmc2_1$))

Ino Ca, Si only, $N^{[2]} \rightarrow O$ Eu2+@ Ca \rightarrow red luminescenceSi:4-coord, N:3-coord, O:2-coord. White LED (Hg-free) using InGaNO: -(4/4) $\times 2 = -2$ N: -(4/4) $\times 3 = -3$ Solid State Lett. 9, H22(2006) etc)

1. Background Why not Al/Si-ordered models ?

Q1 : Assume Al/Si-order ? → symmetry lower than #36, *monoclinic* The monoclinic models remain close to orthorhombic(#36) ? Energetics among the Al/Si-ordered models explain Al/Si-disorder ?

Q2 : Virtual Crystal Approximation(VCA) can treat the Al/Si-mixed case? VCA results (with $\mathbb{Z}^{3.5+}$) $\leftarrow \rightarrow$ results of the Al/Si-ordered models ?

NB: rare heterovalent VCA: Vanderbilt: (BiScO₃)_{1-x}(PbTiO₃)_x: PRB67, 224107(2003)

2. Methodology

Density Functional Theory – Generalized Gradient Approximation : Perdew-Burke-Ernzerhof (PBE)-type functional : Phys. Rev. Lett. 77, 3865 (1996), ibid 80, 891 (1998)

First-Principles Band Calculation : ABINIT code (www.abinit.org) Reference: X. Gonze et al., Comp. Mater. Sci. 25, 478 (2002)

Troullier-Martins-type pseudopotentials, prepared with FHI98PP code FHI98PP : www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP M. Fuchs and M. Scheffler, Comp. Phys. Comm. 119, 67 (1999) VCA : mixing Al/Si ionic potential (1:1 ratio) → details in Next page keywords : ntypalch, <u>mixalch</u> (NB: npsp,znucl,ntypat,algalch=1)

Energy cut-off: 100Ry ('.' Ca: shallow core electrons as valence)

BZ integral : Monkhorst-Pack grid, $\Delta k \leq 0.05 \text{ Å}^{-1}$

SCF sycle : Conjugate Gradient based on the minimum of the energy X. Gonze, Phys. Rev. B54, 4383 (1996)

Convergence ≤ 0.6 kcal/mol should be expected for energetics (1eV=23.06kcal/mol)

Virtual Atom Pseudopotential
(implemention in ABINIT, already available !)

$$V_{VCA}^{ps}[x] = xV_{Al}^{ps} + (1-x)V_{Si}^{ps} \rightarrow Z_{Al/Si} = 3x+4(1-x)$$
 for Ewald sum
 $V_{VCA}^{ps}[x] = xV_{Al}^{ps} + (1-x)V_{Si}^{ps} \rightarrow Z_{Al/Si} = 3x+4(1-x)$ for Ewald sum
 $V^{ps}(r,r') = V^{loc}(r)\delta(r-r') + \sum_{l,m} \frac{|\Delta V_l^{ps}|\phi_{lm}\rangle\langle\phi_{lm}|\Delta V_l^{ps}|}{\langle\phi_{lm}|\Delta V_l^{ps}|\phi_{lm}\rangle}$
 $V_{VCA}^{ps}(r,r') = [xV_{Al}^{loc}(r) + (1-x)V_{Si}^{loc}(r)]\delta(r-r')$
 $+ \sum_{l,m} \frac{|x\Delta V_{Al,l}^{ps}|\phi_{lm}^{Al}\rangle\langle\phi_{lm}^{Al}|x\Delta V_{Al,l}^{ps}|}{\langle\phi_{lm}^{Al}|x\Delta V_{Al,l}^{ps}|}$
 $+ \sum_{l,m} \frac{|(1-x)\Delta V_{Si,l}^{ps}|\phi_{lm}^{Si}\rangle\langle\phi_{lm}^{Si}|(1-x)\Delta V_{Si,l}^{ps}|}{\langle\phi_{lm}^{Si}|(1-x)\Delta V_{Si,l}^{ps}|\phi_{lm}^{Si}\rangle}$
(Ref. Ph.Ghosez, D.Desquesnes, X.Gonze, K.M.Rabe, AIP Conf. Proc. 535, 102 (2000)

[★] MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGY RESEARCH CENTER, INC.

3. Results : models

Business hrough nnovation

3. Results : Geom. Opt. (calc. v.s. expt.)

	#36	#8	#9	#4	expt1	expt2
а	9.8859	9.8717	9.9112	9.9114	9.8020	9.851
b	5.6645	5.6455	5.6887	5.6839	5.6506	5.654
С	5.0840	5.1219	5.0701	5.0726	5.0633	5.071
A	90.00	89.67	90.00	90.00	90.00	90.00
β	90.00	90.00	90.09	90.00	90.00	90.00
r	90.00	90.00	90.00	89.82	90.00	90.00

\rightarrow Al/Si-ordered models approximately keep the orthorhombic cell

expt1: K. Uheda et al. (2006), expt2: F. Ottinger, Ph.D Thesis (2004)

Business ^{through} nnovation

3. Results : Geom. Opt. (calc. v.s. expt.)

	#36	#8	#9	#4	expt1	expt2
Ca-N	2.420(x 2) 2.479 2.525 2.612	2.509 2.516(x 2) 2.630 2.633 2.342(x 2) 2.351 2.467 2.754	2.406 2.432 2.492 2.521 2.603	2.407 2.424 2.481 2.524 2.599	2.405 (x 2) 2.490 2.539 2.586	2.430 (x 2) 2.503 2.520 2.609
typical Al-N 1.87	1.806 1.819 1.820	1.839 1.859 1.877 1.949	1.880 1.881 1.890 1.907	1.872 1.883 1.889 1.920	1.783 1.809	1.797 1.807 1.810
typical Si-N 1.74	1.833	1.720 1.777 1.786 1.792	1.737 1.742 1.783 1.787	1.742 1.745 1.773 1.788	1.833	1.831

Why not Al/Si-ordered models ?

corner-sharing Al-N^[2]-Al seems unstable (" Pauling's 2^{nd} crystal rule) \rightarrow analogy to Loewenstein's rule (avoid corner-sharing Al-O^[2]-Al)?

3. Results : Electronic structure (Band)

MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGY RESEARCH CENTER, INC.

Business

through nnovation

 $V_{\text{VCA}}^{\text{ps}}[x] = x V_{\text{Al}}^{\text{ps}} + (1-x) V_{\text{Si}}^{\text{ps}} \rightarrow Z_{\text{Al/Si}} = 3x + 4(1-x) \text{ for Ewald sum}$

High ionicity

- \rightarrow electron clouds around N ions
- \rightarrow less sensitive about the pseudization of Al/Si site ?
- → How about pseudoatom with Z=(13+14)/2=13.5 ? FHI98PP adopted for the PP with Z=13.5
- (NB: Shiraishi-method for "H"-termination of GaAs surface models H(Z=0.75) for As-surface, H(Z=1.25) for Ga-surface)

3. Results : Geom. Opt. (calc. v.s. expt.)

(#36: with () ... Z=13.5)

	#36 (Z=13.5)	#8	#9	#4	expt1	expt2
a	9.8859 (9.8757)	9.8717	9.9112	9.9114	9.8020	9.851
b	5.6645 (5.6642)	5.6455	5.6887	5.6839	5.6506	5.654
С	5.0840 (5.0805)	5.1219	5.0701	5.0726	5.0633	5.071
α	90.00	89.67	90.00	90.00	90.00	90.00
B	90.00	90.00	90.09	90.00	90.00	90.00
<i>r</i>	90.00	90.00	90.00	89.82	90.00	90.00
ΔΕ		+4.07	0 (origin	a) $+0.03$	⇒ #9/#	4 coexist

(kcal/mol) expt1: K. Uheda et al. (submitted), expt2: F. Ottinger, Bh. D. Thesis. (2010, Hology research center, INC.

3. Results : Geom. Opt. (calc. v.s. expt.)

(#36: with () ... Z=13.5)

Business

	#36	#8	#9	#4	expt1	expt2
	2.420(x 2)	2.509				
Ca-N	2.479 2.525 2.612 (2.420(x2)) (2.476) (2.525) (2.609)	2.516(x 2) 2.630 2.633 2.342(x 2) 2.351 2.467 2.754	2.406 2.432 2.492 2.521 2.603	2.407 2.424 2.481 2.524 2.599	2.405 (x 2) 2.490 2.539 2.586	2.430 (x 2) 2.503 2.520 2.609
Al-N	1.806 1.819 1.829 1.833	1.839 1.859 1.877 1.949	1.880 1.881 1.890 1.907	1.872 1.883 1.889 1.920	1.783 1.809	1.797 1.807
Si-N	(1.805) (1.817) (1.827) (1.832)	1.726 1.777 1.786 1.792	1.737 1.742 1.783 1.787	1.742 1.745 1.773 1.788 ★ MTSUBISHI CHEMICA	1.811 1.833	1.819 1.831

A MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGI RESEARCH CENTER,

4. Conclusion

- © Experimental crystal structures approximately reproduced by aliovalent VCA & Al/Si-ordered models
- ③ Al/Si-ordered model: #9/#4, similarity in atomic/electronic structure
 △ E < 0.1 kcal/mol → #9/#4 will coexist due to *mixing entropy* → a mosaic structure of #9/#4 cells → XRD determination as # 36
- ③ #8 less stable than #9/#4 by 4.1 kcal/mol
 - \rightarrow avoidance of Al-N^[2]-Al network ? (analogy of Loewenstein's rule)
- ☺ Similarity of electronic structure (Band/DOS) among #36/#4/#8/#9
 → reproduces the experimental structure, *Indirect band gap*
- [⊙] Why heterovalent VCA worked ? → chemical similarity of Al and Si e.g. ionic size, electronegativity ... but *how to justify ?*→ may encourage such heterovalent VCA to other ionic compounds ?
 → may be useful for solid-solution compounds such as SiAION ?

Well, our case is just a "fluke" ?!

How about other ionic crystals ?

How about other ionic crystals ? (#1:gehlenite)

$CaAl_2SiO_7 \rightarrow CaAl(Al/Si)O_7$ with Al/Si disorder

	a(Å)	c(Å)
Expt	7.6850	5.0636
LDA	7.5918	4.9438
GGA	7.7491	5.0902

GGA 7.6407 5.0455 (Winker et al. CPL362, 266 (2002) CASTEP code: Ultrasoft PP)

The VCA worked again !

How about other ionic crystals ? (#2:celsian)

 $BaAl_2Si_2O_8 \rightarrow Ba(Al_2/Si_2)O_8$ with Al/Si disorder

abcβExpt8.62213.07814.411115.09°GGA8.705813.197714.5617115.13°(VCA)

The VCA worked again and again ! (You still say, "This is a fluke" ?!)

GGA 8.7607 13.2110 14.6108 115.10° (an <u>ordered model</u> (keeping C2/c))

How about other ionic crystals ? (#3: sinoite)

	Si ₂ N ₂ O(HT)		$Si_2N_2O(LT)$	Si _{1.8} Al _{0.2} N _{1.8} O _{1.2} (LT)	
	calc.	expt. ^[1]	calc.	calc.	expt. ^[2]
a	8.9641	8.866	8.8953	8.9518	8.8488
b	5.5415	5.486	5.4099	5.4105	5.3752
с	4.8893	4.845	4.8674	4.8727	4.8355

•HT(*Cmc*2₁) is more stable than LT(*Bba*2) by 1.5 kcal/mol

→ Expt.^[2] : LT phase transforms to HT phase at $T > \sim 1350^{\circ}C$

• Substitution of (Si,N) with (Al,O) \rightarrow larger Vo. (known in HT(O'-sialon))^[3]

Refractive indices may also be discussed Ref.1: S.R.Srinivasa and L. Cartz, J. Appl. Cryst. 10, 167 (1977) Ref.2: M.E. Bowden et al. J.Am.Ceram.Soc.81, 2188 (1998) Ref.3: O.Lindqvist et al., Acta Cryst. B47, 672 (1991)

Mixed PPs (Al-SI, N-O) seemingly works ... ε (optic) can be computed ("Gladstone-Dale" comfirmed)

We are gathering experience now ...

Thank you for your attention !

★ MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGY RESEARCH CENTER, INC.

Specific gravity v.s. Dielectric Properties (Gladstone-Dale Relationship)

local charge around N^[2] in CaAlSi $(N^{[3]})_2 N^{[2]}$

NB: (#8) -Si-N^[2]-Si-/-Al-N^[2]-Al- linkage do not satisfy "PSCR" → less stability than #9/#4 by 4.1 kcal/mol

MITSUBISHI CHEMICAL GROUP SCIENCE AND TECHNOLOGY RESEARCH CENTER, INC.