Calculations of the optical and electrical properties within the PAW formalism

S. Mazevet, V. Recoules, M. Torrent, G. Zérah, and F. Jollet

Département de Physique Théorique et Appliquée
Commissariat à l'Energie Atomique, Bruyères-Le-Châtel, France
Workshop abinit, Liége, January 2007

Motivations
$\sigma_{1}(\mathbf{k}, \omega)$
Theory
Implementation
Results
X-ray
Theory
Implementation
Results
(2) Electrical Conductivity

- Theory
- Implementation
- Results
(3) X-ray
- Theory
- Implementation
- Results

Figure: Dense hydrogen at $\rho=1 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{T}=3 \mathrm{eV}$

- Studies of dense plasmas: $\sim \rho_{0}$ and $\mathrm{T} \sim 1-10 \mathrm{eV}$
- Molecular dynamics simulations
- Finite temperature: few hundred states
- Gamma point; from 100 to 1000 particles
- Calculate the dynamical, electrical, and optical properties
- $\sigma_{1}(\mathbf{k}, \omega)$ gives access to the other quantities
PAW formalism: X-ray spectra where core orbitals are involved

Within the Kubo-Greenwood formulation, the real part of the conductivity is given by

$$
\begin{aligned}
\sigma_{1}(\mathbf{k}, \omega)=\frac{\mathbf{2} \pi}{\mathbf{3} \omega \boldsymbol{\Omega}} \sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{n}_{\mathbf{b}}} \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}_{\mathbf{b}}} \sum_{\alpha=\mathbf{1}}^{\mathbf{3}} & \left(F\left(\epsilon_{i, \mathbf{k}}\right)-F\left(\epsilon_{j, \mathbf{k}}\right)\right) \\
& \left.\times\left|\left\langle\psi_{j, \mathbf{k}}\right| \nabla_{\alpha}\right| \psi_{i, \mathbf{k}}\right\rangle\left.\right|^{2} \delta\left(\epsilon_{j, \mathbf{k}}-\epsilon_{i, \mathbf{k}}-\omega\right)
\end{aligned}
$$

where

- m_{e} and e are the electron charge and the electron mass
- i and j are the sum over the n_{b} orbitals
- α stands for the 3 directions x, y, et z
- Ω is the volume of the simulation cell
- $\epsilon_{i, \mathbf{k}}$ and $\psi_{i, \mathbf{k}}$ are the $i^{\text {th }}$ orbital for the k-point \mathbf{k}
- $F\left(\epsilon_{i, \mathbf{k}}\right)$ are the occupations

Dipole matrix elements within the PAW formalism

Motivations
$\sigma_{1}(\mathbf{k}, \omega)$
Theory
Implementation
Results
X-ray
Theory
Implementation Results

Within the PAW formalism, $\left|\psi_{i, \mathbf{k}}\right\rangle$ is connected to $\left|\tilde{\psi}_{i, \mathbf{k}}\right\rangle$ by the linear operator T :

$$
\left|\psi_{i, \mathbf{k}}\right\rangle=\left|\tilde{\psi}_{i, \mathbf{k}}\right\rangle+\sum_{\mathbf{R}, n}\left(\left|\phi_{\mathbf{R}, n}\right\rangle-\left|\tilde{\phi}_{\mathbf{R}, n}\right\rangle\right)\left\langle\tilde{p}_{\mathbf{R}, n} \mid \tilde{\psi}_{i, \mathbf{k}}\right\rangle
$$

In PAW the dipole matrix elements become:

$$
\begin{aligned}
\left\langle\psi_{m, \mathbf{k}}\right| \vec{\nabla}\left|\psi_{n, \mathbf{k}}\right\rangle= & \left\langle\tilde{\psi}_{m, \mathbf{k}}\right| \vec{\nabla}\left|\tilde{\psi}_{n, \mathbf{k}}\right\rangle \\
& +\sum_{i, j}\left\langle\tilde{\psi}_{m, \mathbf{k}} \mid \tilde{p}_{i}\right\rangle\left\langle\tilde{p}_{j} \mid \tilde{\psi}_{n, \mathbf{k}}\right\rangle\left(\left\langle\phi_{i}\right| \vec{\nabla}\left|\phi_{j}\right\rangle-\left\langle\tilde{\phi}_{i}\right| \vec{\nabla}\left|\tilde{\phi}_{j}\right\rangle\right)
\end{aligned}
$$

where i and j stand for the sum over $\{\mathbf{R}, n\}$.

First term: plane wave contribution

Motivations
$\sigma_{1}(\mathbf{k}, \omega)$
Theory
Implementation
Results
X-ray
Theory
Implementation Results

We evaluate the first term in cartesian coordinates using the plane wave expansion

$$
\psi_{m, \mathbf{k}}=\frac{1}{\sqrt{\Omega}} \sum_{\vec{G}} C_{\vec{G}}^{m} e^{i(\vec{G}+\vec{k}) \cdot \vec{r}}
$$

which leads to

$$
\left\langle\tilde{\psi}_{m, \mathbf{k}}\right| \nabla_{\alpha}\left|\tilde{\psi}_{n, \mathbf{k}}\right\rangle=\sum_{\vec{G}} C_{\vec{G}}^{* m} C_{\vec{G}}^{n}(\vec{G}+\vec{k}) \cdot \vec{i}_{\alpha}
$$

$\sigma_{1}(\mathbf{k}, \omega)$
Theory
Implementation Results X-ray

Theory
Implementation Results

We use the standart separation of an atomic orbital into a radial and an angular parts $\phi(\vec{r})=\frac{u_{n, l}(r)}{r} S_{l, m}(\hat{r})$ where $S_{l, m}(\hat{r})$ are the real spherical harmoniques, and express the gradient in spherical coordinates

$$
\vec{\nabla}=\left(\begin{array}{c}
\frac{\partial}{\partial r} \\
\frac{1}{r} \frac{\partial}{\partial \theta} \\
\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}
\end{array}\right), \begin{aligned}
\hat{r} & =\sin \theta \cos \phi \vec{i}+\sin \theta \sin \phi \vec{j}+\cos \theta \vec{k} \\
\hat{\theta} & =\cos \theta \cos \phi \vec{i}+\sin \phi \cos \phi \vec{j}-\sin \theta \vec{k} \\
\hat{\phi} & =-\sin \phi \vec{i}+\cos \phi \vec{j}
\end{aligned}
$$

We also use the expression of $\hat{r}, \hat{\theta}$, et $\hat{\phi}$ in cartesienne coordinates. This leads to 2 types of radial integrals and 8 angular integrals

$$
\begin{aligned}
f^{1} & =\int d r u_{n, l}(r) \frac{\partial}{\partial r} u_{n^{\prime}, l^{\prime}}(r) \\
f^{2} & =\int d r \frac{1}{r} u_{n, l}(r) u_{n^{\prime}, l^{\prime}}(r)
\end{aligned}
$$

Implementation in Abinit

Motivations
$\sigma_{1}(\mathrm{k}, \omega)$

Implementation Results
X-ray
Theory
Implementation Results

- Ground state calculation with prtnabla=1 and prtwfk=1: call to optics_paw.F90 from outscfcv.F90 (in /11drive)
- Subroutine optics_paw.F90 (in /11drive)
- call to ctocprj.f: calculations of the projectors $\left\langle\tilde{p}_{j} \mid \tilde{\psi}_{n, \mathbf{k}}\right\rangle$
- calculate the radial integrals f_{1} and f_{2} for $u_{n, l}(r)$ and $\tilde{u}_{n, l}(r)$
- call to int_ang.F90 calculate the angular integrals
- write the matrix elements in the file filename_OPT
- Postprocessing of the dipole matrix elements using conducti
- read the matrix elements in filename_OPT
- calculate the electrical and thermal conductivities
- execution: conducti <filename.files
- filename.in:

2!2 for PAW calculations
filename_OPT! optics filename
filename_WFK! ground state data file obtained with prtwfk=1
0.0036749 !temperature
1.000 ! K points weight
0.0731190 .00000015 .001000 !width, $\omega_{\min }, \omega_{\max }$, nbr pts

Aluminum conductivity

Theory
Implementation Results
X-ray
Theory
Implementation Results
Resurs
-

- 4 atoms in FCC position
- LDA pseudopotential
- Temperature of 1 eV
- Very close agreement with a similar VASP calculation

Figure: Aluminum conductivity

- $\alpha(\omega)$ is directly related to the real part of the electrical conductivity $\alpha(\omega)=\sigma_{1}(\omega) / n(\omega)$ where $n(\omega)$ is the index of refraction.
- Include frozen orbitals ϕ_{c} in $\sigma_{1}(\mathbf{k}, \omega)$.

$$
\left\langle\psi_{m, \mathbf{k}}\right| \vec{\nabla}\left|\phi_{c}\right\rangle=\left\langle\tilde{\psi}_{m, \mathbf{k}}\right| \vec{\nabla}\left|\phi_{c}\right\rangle+\sum_{i}\left\langle\tilde{\psi}_{m, \mathbf{k}} \mid \tilde{p}_{i}\right\rangle\left(\left\langle\phi_{i}\right| \vec{\nabla}\left|\phi_{c}\right\rangle-\left\langle\tilde{\phi}_{i}\right| \vec{\nabla}\left|\phi_{c}\right\rangle\right) .
$$

- when $\phi_{c}=0$ for $r>\Omega_{\mathbf{R}}$ the dipole matrix elements become

$$
\left\langle\psi_{m, \mathbf{k}}\right| \vec{\nabla}\left|\phi_{c}\right\rangle=\sum_{i}\left\langle\tilde{\psi}_{m, \mathbf{k}} \mid \tilde{p}_{i}\right\rangle\left\langle\phi_{i}\right| \vec{\nabla}\left|\phi_{c}\right\rangle .
$$

where we use the fact that $\{|\tilde{\phi}\rangle\}$ represent a complete basis for $|\tilde{\psi}\rangle$ inside Ω_{R}

- Average on the different atomic sites \mathbf{R}

Implementation in Abinit

- N.A. Holzwarth PAW pseudopotential generator
- Save the core WF when producing the PAW pseudopotential in Wfc.pseudoname
- Ground state calculation with prtnabla=1 and prtwfk=1: call to optics_paw_core.F90 from outscfcv.F90 (in /11drive)
- Subroutine optics_paw_core.F90 (in /11drive)
- similar functions as optics_paw.F90
- calculate the additional matrix elements including the core states
- write the matrix elements in the file filename_OPT2
- Postprocessing of the dipole matrix elements using conducti

Preliminary results

Motivations
$\sigma_{1}(\mathbf{k}, \omega)$
Theory
Implementation Results
X-ray
Theory
Implementation Results

- 4 atoms in FCC position
- 6 atoms liquid
- LDA pseudopotential
- temperature of 1 eV
- single k-point Γ
- 400 bands to converge $\sim 100 \mathrm{eV}$ above the edge

Figure: K shell absorption in Al

Future work

- test on larger systems
- deal high energy states
- include in version 5.4

