

Motivations

 $\sigma_1(\mathbf{k}, \omega)$

Theory Implementat Results X-ray

Theory Implementation Results

Calculations of the optical and electrical properties within the PAW formalism

S. Mazevet, V. Recoules, M. Torrent, G. Zérah, and F. Jollet

Département de Physique Théorique et Appliquée Commissariat à l'Energie Atomique, Bruyères-Le-Châtel, $\rm FRANCE$

Workshop abinit, Liége, January 2007

Motivations

Motivations

 $\sigma_1(\mathbf{k}, \omega)$

Theory Implementatio Results X-ray

Theory Implementation Results

FIGURE: Dense hydrogen at $\rho = 1 \text{g/cm}^3$ and T=3eV

- Studies of dense plasmas: $\sim \rho_0$ and ${\rm T} \sim 1-10 {\rm eV}$
- Molecular dynamics simulations
- Finite temperature: few hundred states
- Gamma point; from 100 to 1000 particles
- Calculate the dynamical, electrical, and optical properties
- $\sigma_1({\bf k},\omega)$ gives access to the other quantities

PAW formalism: X-ray spectra where core orbitals are involved

Kubo-Greenwood Formulation

Motivations

 $\sigma_1(\mathbf{k}, \omega)$

Within the Kubo-Greenwood formulation, the real part of the conductivity is given by

Theory Implementat Results X-ray

Theory Implementation Results

$$\sigma_{1}(\mathbf{k},\omega) = \frac{2\pi}{3\omega\Omega} \sum_{\mathbf{j}=1}^{\mathbf{n}_{\mathbf{b}}} \sum_{\mathbf{i}=1}^{\mathbf{n}_{\mathbf{b}}} \sum_{\alpha=1}^{3} \qquad (F(\epsilon_{i,\mathbf{k}}) - F(\epsilon_{j,\mathbf{k}}))$$
$$\times |\langle \psi_{j,\mathbf{k}} | \nabla_{\alpha} | \psi_{i,\mathbf{k}} \rangle|^{2} \delta(\epsilon_{j,\mathbf{k}} - \epsilon_{i,\mathbf{k}} - \omega).$$

where

- m_e and e are the electron charge and the electron mass
- i and j are the sum over the n_b orbitals
- α stands for the 3 directions x, y, et z
- Ω is the volume of the simulation cell
- $\epsilon_{i,\mathbf{k}}$ and $\psi_{i,\mathbf{k}}$ are the i^{th} orbital for the k-point \mathbf{k}
- $F(\epsilon_{i,\mathbf{k}})$ are the occupations

Motivations

 $\sigma_1(\mathbf{k}, \omega)$

Theory

Implementa Results X-ray

Theory Implementatio Results Within the PAW formalism, $|\psi_{i,{\bf k}}\rangle$ is connected to $|\tilde{\psi}_{i,{\bf k}}\rangle$ by the linear operator T:

$$|\psi_{i,\mathbf{k}}\rangle = |\tilde{\psi}_{i,\mathbf{k}}\rangle + \sum_{\mathbf{R},n} \left(|\phi_{\mathbf{R},n}\rangle - |\tilde{\phi}_{\mathbf{R},n}\rangle \right) \langle \tilde{p}_{\mathbf{R},n} |\tilde{\psi}_{i,\mathbf{k}}\rangle.$$

In PAW the dipole matrix elements become:

$$\begin{split} \langle \psi_{m,\mathbf{k}} | \vec{\nabla} | \psi_{n,\mathbf{k}} \rangle &= \qquad \langle \tilde{\psi}_{m,\mathbf{k}} | \vec{\nabla} | \tilde{\psi}_{n,\mathbf{k}} \rangle \\ &+ \sum_{i,j} \langle \tilde{\psi}_{m,\mathbf{k}} | \tilde{p}_i \rangle \langle \tilde{p}_j | \tilde{\psi}_{n,\mathbf{k}} \rangle \left(\langle \phi_i | \vec{\nabla} | \phi_j \rangle - \langle \tilde{\phi}_i | \vec{\nabla} | \tilde{\phi}_j \rangle \right) \end{split}$$

where i and j stand for the sum over $\{\mathbf{R}, n\}$.

Motivations

 $\sigma_1({\bf k},\,\omega)$

Theory

Implementa Results X-ray

-ray Theory mplementation We evaluate the first term in cartesian coordinates using the plane wave expansion

$$\psi_{m,\mathbf{k}} = \frac{1}{\sqrt{\Omega}} \sum_{\vec{G}} C^m_{\vec{G}} e^{i(\vec{G}+\vec{k}).\vec{r}}$$

which leads to

$$\langle \tilde{\psi}_{m,\mathbf{k}} | \nabla_{\alpha} | \tilde{\psi}_{n,\mathbf{k}} \rangle = \sum_{\vec{G}} C^{*m}_{\vec{G}} C^n_{\vec{G}} (\vec{G} + \vec{k}) . \vec{i}_{\alpha}$$

Motivations

 $\sigma_1({\bf k},\,\omega)$

Theory

Implementa Results X-ray We use the standart separation of an atomic orbital into a radial and an angular parts $\phi(\vec{r}) = \frac{u_{n,l}(r)}{r} S_{l,m}(\hat{r})$ where $S_{l,m}(\hat{r})$ are the real spherical harmoniques, and express the gradient in spherical coordinates

Theory Implementation Results

$$\vec{\nabla} = \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial \theta} \\ \frac{1}{r\sin\theta} \frac{\partial}{\partial \phi} \end{pmatrix}, \quad \begin{array}{l} \hat{r} &=& \sin\theta\cos\phi\vec{i} + \sin\theta\sin\phi\vec{j} + \cos\theta\vec{k}, \\ \hat{\theta} &=& \cos\theta\cos\phi\vec{i} + \sin\phi\cos\phi\vec{j} - \sin\theta\vec{k}, \\ \hat{\phi} &=& -\sin\phi\vec{i} + \cos\phi\vec{j}. \end{array}$$

We also use the expression of \hat{r} , $\hat{\theta}$, et $\hat{\phi}$ in cartesienne coordinates. This leads to 2 types of radial integrals and 8 angular integrals

$$f^{1} = \int dr u_{n,l}(r) \frac{\partial}{\partial r} u_{n',l'}(r),$$

$$f^{2} = \int dr \frac{1}{r} u_{n,l}(r) u_{n',l'}(r).$$

Implementation in Abinit

Motivations

- $\sigma_1(\mathbf{k}, \omega)$
- Implementation Results
- Theory Implementation Results
- Ground state calculation with prtnabla=1 and prtwfk=1: call to optics_paw.F90 from outscfcv.F90 (in /11drive)
 - Subroutine optics_paw.F90 (in /11drive)
 - call to ctocprj.f: calculations of the projectors $\langle \tilde{p}_j | \tilde{\psi}_{n,\mathbf{k}} \rangle$
 - $\bullet\,$ calculate the radial integrals f_1 and f_2 for $u_{n,l}(r)$ and $\tilde{u}_{n,l}(r)$
 - call to int_ang.F90 calculate the angular integrals
 - write the matrix elements in the file filename_OPT
- Postprocessing of the dipole matrix elements using conducti
 - read the matrix elements in filename_OPT
 - calculate the electrical and thermal conductivities
 - execution: conducti <filename.files
 - filename.in:

2 ! 2 for PAW calculations filename_OPT ! optics filename filename_WFK ! ground state data file obtained with prtwfk=1 0.0036749 !temperature 1.000 ! K points weight 0.073119 0.0000001 5.00 1000 !width, ω_{min}, ω_{max}, nbr pts

Aluminum conductivity

- 4 atoms in FCC position
- LDA pseudopotential
- Temperature of 1eV
- Very close agreement with a similar VASP calculation

 $\label{eq:Figure: Aluminum conductivity} Figure: Aluminum conductivity$

X-ray absorption: Theory

Motivations

 $\sigma_1({\bf k},\,\omega)$

- Theory Implementatio Results X-ray
- Theory Implementation Results
- $\alpha(\omega)$ is directly related to the real part of the electrical conductivity $\alpha(\omega) = \sigma_1(\omega)/n(\omega)$ where $n(\omega)$ is the index of refraction.
- Include frozen orbitals ϕ_c in $\sigma_1(\mathbf{k}, \omega)$.

$$\langle \psi_{m,\mathbf{k}} | \vec{\nabla} | \phi_c \rangle = \langle \tilde{\psi}_{m,\mathbf{k}} | \vec{\nabla} | \phi_c \rangle + \sum_i \langle \tilde{\psi}_{m,\mathbf{k}} | \tilde{p}_i \rangle \left(\langle \phi_i | \vec{\nabla} | \phi_c \rangle - \langle \tilde{\phi}_i | \vec{\nabla} | \phi_c \rangle \right).$$

• when $\phi_c = 0$ for $r > \Omega_{\mathbf{R}}$ the dipole matrix elements become

$$\langle \psi_{m,\mathbf{k}} | \vec{\nabla} | \phi_c \rangle = \sum_i \langle \tilde{\psi}_{m,\mathbf{k}} | \tilde{p}_i \rangle \langle \phi_i | \vec{\nabla} | \phi_c \rangle.$$

where we use the fact that $\{|\tilde{\phi}\rangle\}$ represent a complete basis for $|\tilde{\psi}\rangle$ inside $\Omega_{\bf R}$

• Average on the different atomic sites **R**

Motivations

 $\sigma_1({\bf k},\,\omega)$

Theory Implementation Results X-ray

Theory Implementation Results

- N.A. Holzwarth PAW pseudopotential generator
- Save the core WF when producing the PAW pseudopotential in Wfc.pseudoname
- Ground state calculation with prtnabla=1 and prtwfk=1: call to optics_paw_core.F90 from outscfcv.F90 (in /11drive)
- Subroutine optics_paw_core.F90 (in /11drive)
 - similar functions as optics_paw.F90
 - calculate the additional matrix elements including the core states
 - write the matrix elements in the file filename_OPT2
- Postprocessing of the dipole matrix elements using conducti

Preliminary results

 $\operatorname{Figure:}$ K shell absorption in Al

Future work

- test on larger systems
- deal high energy states
- include in version 5.4

- 4 atoms in FCC position
- 6 atoms liquid
- LDA pseudopotential
- temperature of 1eV
- single **k**-point Γ
- 400 bands to converge $\sim 100 \text{eV}$ above the edge