
Parallel 3-dim FFT’s for electronic
structure calculations

Stefan Goedecker

Basic problems of FFT’s:

• Low ratio between floating point operations
and data (load/store’s)
3-dim FFT:

– N3 data points

– 15N3 log2(N) floating point operations

• Large data sets that do not fit into cache

• Highly nonlocal data access pattern

• Large amount of communication for parallel FFT

0-0

Multiple 1-dim FFT’s for improved data locality

1 3 5 7 2 4 6 8

9 11 13 15 10 12 14

20

16

17 19 21 23 18 20 22 24

TRANSFORMATION DIRECTION

1

5

7

9

2

4

6

8

10

11

13

15

17

19

21

25

27

29

12 22

24

26

28

30

3 23 14

16

18

Figure 1: The data access pattern for a multiple FFT, where five data sets of length eight
are transformed. A Fortran column major ordering is assumed. On the left, the inner loop
is over a single FFT sweep, resulting in a non-local data access pattern. On the right, the
inner loop runs over the five data sets, leading to good spatial data locality.

0-1

Rotation technique for a 3-dim FFT

Convention:
. i1, i2, i3 untransformed dimensions
. I1, I2, I3 transformed dimensions

i1, i2, i3

I3, i1, i2

I2, I3, i1

I1, I2, I3

0-2

Cache blocking on hierarchical memory computers

(i1, i2), i3→ i12, i3→ j, k, i3

k = 1, ..., lot
j = 1, ..., m12 = n1 × n2 /lot
m12 × n3 ≤ cache-size

OpenMP parallelization

Parallelize k loop

0-3

Performance results
Time (speedup) in seconds for a single 3-dim transform of size 1283

• on DEC Alpha, 666 MHz (.41 sec gives 540 Mflops)
Data from Philippe Blaise, Centre de Calcul CEA Grenoble

Numb. Proc.’s DEC CXML My OpenMP My MPI FFTW (serial/MPI)
serial .36 .41 .94 .87
1 .87 .41 (1.) .94 (1.) 1.31
2 .37 .25 (1.6) .50 (1.9) .99
4 .20 .16 (2.6) .27 (3.5) .45
8 .18 .17 (5.5) .47
16 .13 .12 (7.8) .47

• IBM Power3
Data from Andrew Canning, NERSC, Berkeley

Numb. of Proc.’s 1 2 4 8 16
time (speedup) .81 (1.) .40 (2.) .21 (3.9) .12 (6.7) .09 (9.0)

0-4

3-dim FFT algorithm for distributed memory

Input: i1,i2,j3,(jp3)

multiple 1-dim FFT: i1,I2,j3,(jp3)

Rotation: I2,i1,j3,(jp3)

multiple 1-dim FFT: I2,I1,j3,(jp3)

Rotation: I1,I2,j3,(jp3)

Previous data set reformatted: I1,J2,Jp2,j3,(jp3)

Copy: I1,J2,j3,Jp2,(jp3)

MPI_ALLTOALL: I1,J2,j3,jp3,(Jp2)

Previous data set reformatted: I1,J2,i3,(Jp2)

multiple 1-dim FFT: I1,J2,I3,(Jp2)

Copy: I1,I3,J2,(Jp2)

0-5

Results for single 3-dim FFT on massively parallel machines

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

S
pe

ed
 (M

flo
ps

/s
ec

)

Number of processors

T3E (lib)

T3E

SP2

SP2(-g)

Origin

Figure 2: The parallel performance of a 1283 FFT on the Cray T3E, IBM SP2 and SGI
Origin2000. On the Cray we show both the performance of our implementation and that
of the PCCFFT3D library, denoted by “lib”

0-6

Multiple 3-dim FFT’s on multiprocessor nodes

Overlap communication and computation

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �
� � � � �

� � � � �

� � � � �

� � � � �
� � � � �

� � � � �

� � � � �

� � � � �
� � � � �

� � � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

� � � � � �

� � � � � �
� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

GROUP 2

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

GROUP 0

GROUP 1

GROUP 3

GROUP 2

GROUP 0

GROUP 1

GROUP 3

0-7

Multiple 3-dim convolutions on multiprocessor nodes

Application of local potential on wavefunction is a convolution

• FFT from Fourier into real space with zero padding to eliminate aliasing errors

• Multiplication of wavefunction with potential in real space

• FFT from real into Fourier space

Advantages:

• Since the data sets in Fourier space are 8 times smaller than in real space the amount
of communication can be reduced

• Cache blocking can be done in a combined way for the last sweep in the initial FFT
the multiplication with the potential in real space and the first sweep of the final
FFT

0-8

Results for multiple 3-dim convolutions massively parallel machines

Table 1: Timings, [speed in Gflops] and (speedup) of the MPI and mixed OpenMP/MPI
implementation on a Crat XT3 and a Compaq SC for 3-dim multiple FFTs.

1 XT3 MPI SC MPI SC 1 mixed SC 2 mixed SC 4 mixed
1 2.91 2.93 1.72 (1.7) 0.84 (3.5)
2 1.0 [2.3] 1.63 (1.8) 1.62 (1.8) 0.84 (3.5) 0.45 (6.6)
4 .52 [4.6] 0.88 (2.5) 0.88 (3.3) 0.46 (6.3) 0.25 (11.9)
8 .25 [9.5] 0.54 (5.4) 0.47 (6.3) 0.25 (12.0) 0.14 (20.3)
16 .13 [19] 0.25 (11.7) 0.24 (12.3) 0.13 (22.9) 0.081 (36.4)
32 .071 [34] 0.13 (22.7) 0.13 (22.6) 0.075 (38.9) 0.050 (58.4)
64 .034 [70] 0.066 (43.8) 0.067 (43.7) 0.037 (79.0) 0.032 (91.8)
128 .018 [134] 0.040 (72.0) 0.036 (81.2) 0.019 (158) 0.018 (163)

0-9

Conclusion

• Even though standard single FFT’s are difficult to parallelize, convolutions can give
very high performance on massively parallel computers with fast networks

References:

• S. Goedecker: Comp. Phys. Commun. 76, 294 (1993)

• S. Goedecker: SIAM Journal on Scientific Computing 18, 1605 (1997)

• S. Goedecker, M. Boulet, T. Deutsch: Comp. Phys. Commun. 154 105 (2003)

0-10

Parallelization of Wavelet based version of Abinit

2 types of datastructures

• Convolutions and fast wavelet transformations are not parallelized. Each processor
treats one or several orbitals.

I,iorb,(jorb)

• In the orthogonalization part each processor has a fraction of the coefficients of
all the wavefunctions. This datastructure is obtained from the previous one in the
following way:

i,j,iorb,(jorb)

Copy: i,iorb,j,(jorb)

MPI_alltoall i,iorb,jorb,(j)

i,IORB,(j)

0-11

