Introduction to Geometric phases

Umesh V. Waghmare
Theoretical Sciences Unit
J N C A S R
Bangalore

ICMR

OUTLINE

1. Geometric phases

- Quantum Systems
- Generalization of geometric phases
- Methods of calculation

2. Electronic polarization as geometric phase of Bloch electrons
3. Wannier functions

Geometric (Berry) Phases in Quantum Mechanics
Dependence on parameter ξ : $\mathrm{H}(\xi)$

$$
\begin{gather*}
i \frac{d}{d t} \Psi(t)=H(\xi(t)) \Psi(t) \tag{1}\\
\text { At } \mathrm{t}=0: \Psi(0)=\mid n, \xi(0)>, \text { and } \xi(\mathrm{t}) \text { is } \\
\text { changed asdiabatically: }
\end{gather*}
$$

$$
H(\xi(t))\left|n, \xi(t)>=E_{n}(\xi(t))\right| n, \xi(t)>
$$

$$
\Psi(t)=\exp \left(i \gamma_{n}(t)-i \int_{0}^{t} E_{n}(\xi(s)) d s\right) \mid n, \xi(t)>
$$

$\Psi(t)$ satisfies Schrodinger equation if:

$$
\gamma_{n}=i \int_{0}^{\xi(t)}<n, \xi\left|\frac{d}{d \xi}\right| n, \xi>d \xi
$$

γ_{n} is real, topological, non-dynamical phase independent of the rate of change in ξ with time.

Information in the phases
 Consider closed paths: $H(t=0)=H(t=T)$
 \rightarrow Berry phase.

- Dynamical Phase (dependent on energy): "How long did your trip take?"
- Geometric Phase (dependent on path and geometry):
"Where have you been?"
sort of like memory.

Geometric phase

Quantum Hamiltonian $H(\xi)$ parametrized by a scalar field ξ.
Relative phase between eigenstates u_{n} at ξ and ξ^{\prime} :

$$
\begin{align*}
e^{-i \Delta \gamma_{n}} & =\frac{\left\langle u_{n}(\xi) \mid u_{n}\left(\xi^{\prime}\right)\right\rangle}{\left|\left\langle u_{n}(\xi) \mid u_{n}\left(\xi^{\prime}\right)\right\rangle\right|} \\
\Rightarrow \Delta \gamma_{n} & =-\operatorname{Im} \operatorname{In}\left\langle u_{n}(\xi) \mid u_{n}\left(\xi^{\prime}\right)\right\rangle \tag{2}
\end{align*}
$$

For $\xi^{\prime}=\xi+\Delta \xi$ with $\Delta \xi \rightarrow 0$. The leading order in $\Delta \xi \Rightarrow$

$$
\Delta \gamma_{n}=i\left\langle u_{n}(\xi) \left\lvert\, \frac{\partial}{\partial \xi} u_{n}(\xi)\right.\right\rangle \Delta \xi
$$

For an evolving $H(\xi)$ from ξ_{1} to ξ_{2} the total geometric phase picked up by the system:

$$
\begin{equation*}
\gamma_{n}=i \int_{\xi_{1}}^{\xi_{2}}\left\langle u_{n}(\xi) \left\lvert\, \frac{\partial}{\partial \xi} u_{n}(\xi)\right.\right\rangle d \xi \tag{3}
\end{equation*}
$$

Berry phase

Consider a closed path in parameter space:

$$
\xi_{1} \rightarrow \xi_{2} \rightarrow \xi_{3} \rightarrow \xi_{1}
$$

Adiabaticity: system evolves slowly such that it is always in the same eigen state (labelled by n) of the instantaneous Hamiltonian. Total geometric phase:

$$
\begin{gather*}
\gamma_{n}=\gamma_{n}^{12}+\gamma_{n}^{23}+\gamma_{n}^{31} \\
=-\operatorname{Im} \ln \left\langle u_{n}\left(\xi_{1}\right) \mid u_{n}\left(\xi_{2}\right)\right\rangle\left\langle u_{n}\left(\xi_{2}\right) \mid u_{n}\left(\xi_{3}\right)\right\rangle\left\langle u_{n}\left(\xi_{3}\right) \mid u_{n}\left(\xi_{1}\right)\right\rangle \tag{4}
\end{gather*}
$$

Note: All arbitrary phases cancel out. Continuum limit:

$$
\begin{equation*}
\gamma_{n}^{B e r r y}=\oint \chi_{n}(\xi) d \xi \tag{5}
\end{equation*}
$$

where $\chi_{n}(\xi)=i\left\langle u_{n}(\xi) \left\lvert\, \frac{\partial}{\partial \xi} u_{n}(\xi)\right.\right\rangle$ is the Berry connection.

Generalization of geometric phase

- Aharonov and Anandan (1987):

Adiabatic evolution is not necessary.
Any closed loop parametric evolution of Hamiltonian yields geometric phase γ.
γ becomes $\gamma^{\text {Berry }}$ in the adiabatic limit.

- Samuel and Bhandari (1988):

Closed loop not a necessary condition for defining γ.
Pancharatnam connection β between eigenstates at ξ and ξ^{\prime} gives the phase:

$$
\beta=-\operatorname{Im} \operatorname{In}\left\langle u_{n}(\xi) \mid u_{n}\left(\xi^{\prime}\right)\right\rangle
$$

Open path geometric phase

Consider an open path in parameter space :

$$
\xi_{1} \rightarrow \xi_{2} \rightarrow \xi_{3} \rightarrow \xi_{4}
$$

Hamiltonian at ξ_{1} and ξ_{4} are related by a symmetry:

$$
\begin{gathered}
H\left(\xi_{4}\right)=W^{-1} H\left(\xi_{1}\right) W \Rightarrow u_{n}\left(\xi_{4}\right)=W^{-1} u_{n}\left(\xi_{1}\right) \\
\Rightarrow \gamma_{n}=-\operatorname{Im} \operatorname{In}(\\
\left.\left\langle u_{n}\left(\xi_{1}\right) \mid u_{n}\left(\xi_{2}\right)\right\rangle\left\langle u_{n}\left(\xi_{2}\right) \mid u_{n}\left(\xi_{3}\right)\right\rangle\left\langle u_{n}\left(\xi_{3}\right)\right| W^{-1}\left|u_{n}\left(\xi_{1}\right)\right\rangle\right)
\end{gathered}
$$

Example : Bloch electrons in an isolated band n
For a direction α :
$k_{\alpha}^{i}=\frac{(i-1)}{M} b_{\alpha}, i=1$ to M
b_{α} : a reciprocal space lattice vector

$$
H\left(k_{\alpha}+b_{\alpha}\right)=\exp \left(-i b_{\alpha} \cdot r\right) H\left(k_{\alpha}\right) \exp \left(i b_{\alpha} \cdot r\right)
$$

$H(k)$: Hamiltonian for the cell periodic part of Bloch functions

$$
\begin{equation*}
u_{n\left(k_{\alpha}+b_{\alpha}\right)}=\exp \left(-i b_{\alpha} \cdot r\right) u_{n k_{\alpha}} \rightarrow \text { Periodic gauge } \tag{6}
\end{equation*}
$$

$$
\begin{align*}
\gamma_{n}^{\alpha}= & -\operatorname{Im} \operatorname{In}\left\langle u_{n k_{\alpha}^{1}} \mid u_{n k_{\alpha}^{2}}\right\rangle\left\langle u_{n k_{\alpha}^{2}} \mid u_{n k_{\alpha}^{3}}\right\rangle \\
& \ldots\left\langle u_{n k_{\alpha}^{(M-1)}}\right| e^{\left(-i b_{\alpha} r_{\alpha}\right)}\left|u_{n k_{\alpha}^{1}}\right\rangle \tag{7}
\end{align*}
$$

In the continuum limit:

$$
\begin{equation*}
\gamma_{n}^{\alpha}=i \int_{0}^{b_{\alpha}}\left\langle u_{n k_{\alpha}} \left\lvert\, \frac{\partial}{\partial k_{\alpha}} u_{n k_{\alpha}}\right.\right\rangle d k_{\alpha} \tag{8}
\end{equation*}
$$

Non Abelian geometric phase

N-electron single Slater determinant state from independent electronic wavefunctions:
$|\Psi(\xi)\rangle=\frac{1}{\sqrt{N!}}\left|u_{1}(\xi) u_{2}(\xi) \ldots u_{N}(\xi)\right|$
From (2): $\Delta \gamma=-\operatorname{Im} \operatorname{In}\left\langle\Psi(\xi) \mid \Psi\left(\xi^{\prime}\right)\right\rangle$

$$
\begin{equation*}
=-\operatorname{Im} \operatorname{In} \operatorname{det} S\left(\xi, \xi^{\prime}\right) \tag{9}
\end{equation*}
$$

$S_{i j}\left(\xi, \xi^{\prime}\right)=\left\langle u_{i}(\xi) \mid u_{j}\left(\xi^{\prime}\right)\right\rangle \rightarrow(N \times N)$ matrix
For a closed path made of M contiguous discreet points in ξ space the Berry phase [(3)] generalizes to $(N \times N)$ matrix Γ given by:

$$
e^{i\ulcorner }=\Pi_{s=1}^{M} S\left(\xi_{s}, \xi_{s+1}\right)
$$

In the continuum limit:

$$
\begin{equation*}
\exp -i \Gamma=P \exp -i \oint \chi(\xi) d \xi \tag{10}
\end{equation*}
$$

P is path ordering operator.

$$
\begin{align*}
\chi_{i j}(\xi) & =i\left\langle u_{i}(\xi) \left\lvert\, \frac{\partial}{\partial \xi} u_{j}(\xi)\right.\right\rangle: \text { Non Abelian connection } \\
\gamma & =-\operatorname{Im} \operatorname{In} \Pi_{s=1}^{M}\left\langle\Psi\left(\xi_{s}\right) \mid \Psi\left(\xi_{s+1}\right)\right\rangle \\
& =-\operatorname{Im} \operatorname{In} \operatorname{det} e^{-i \Gamma}=\operatorname{Re} \operatorname{tr} \Gamma(11) \tag{11}
\end{align*}
$$

(11) implies :

$$
\begin{equation*}
\gamma=\operatorname{Retr} \Gamma=\sum_{j=1}^{N} \gamma_{j} \tag{12}
\end{equation*}
$$

$\left\{\gamma_{j}\right\}$, the eigenvalues of gauge invariant Γ, are potential physical observable.
Within parallel transport gauge the open path geometric phase [(6)] if obtained as:

$$
\begin{equation*}
\left|u_{n}^{\|}\left(\xi_{4}\right)\right\rangle=e^{i \gamma_{n}} W^{-1}\left|u_{n}^{\|}\left(\xi_{1}\right)\right\rangle \tag{13}
\end{equation*}
$$

Similarly the geometric phase matrix Γ is obtained as:

$$
\begin{equation*}
\left[e^{i \Gamma}\right]_{i j}=\left\langle u_{i}^{\|}\left(\xi_{1}\right)\right| W\left|u_{j}^{\|}\left(\xi_{4}\right)\right\rangle \tag{14}
\end{equation*}
$$

For Bloch electrons along k_{α} in the Brillouin zone :

$$
\begin{equation*}
\left[e^{i \Gamma_{\alpha}}\right]_{i j}=\left\langle u_{\mathbf{k}, \mathbf{i}}^{\|}\right| e^{b_{\alpha} \cdot r}\left|u_{\mathbf{k}+\overrightarrow{\mathbf{e}}_{\alpha} \mathbf{b}_{\alpha, \mathbf{j}}}^{\|}\right\rangle \tag{15}
\end{equation*}
$$

where $b_{\alpha}=2 \pi / a, a$ being the lattice constant in the α direction.

Parallel Transported Wavefunctions and Geo-

 metric Phase- Parallel Transport:

$$
<n, \xi\left|\frac{d}{d \xi}\right| n, \xi>=0
$$

- Geometric phase: $\left|n, \xi+\Delta \xi>_{\|}=\right| n, \xi>_{\|}$ $\left.+\Delta \xi \frac{d}{d \xi} \right\rvert\, n, \xi>_{\|}$

γ recoverd once the loop is closed!

$$
\gamma=\operatorname{Im}(\log (<n, \xi=0 \mid n, \xi=1>))
$$

- No random phases if:
$\psi\left(\xi_{1}\right)$ and $\psi\left(\xi_{2}\right)$ are related to each other by parallel transport

Calculation of Γ phase matrix (DFT)

- Parallel Transport(PT) Bloch functions from $k=-\frac{\pi}{a}$ to $k=\frac{\pi}{a}$
- Obtain $\left.\frac{d}{d k} \right\rvert\, u_{k n}>$ using DFT linear response s.t. $<u_{k m}\left|\frac{d}{d k}\right| u_{k n}>=0$
$-\left|u_{k+\Delta k n}>=\left|u_{k n}>+\Delta k \frac{d}{d k}\right| u_{k n}>\right.$: RungeKutta integrate from k to $k+\delta k$
- Obtain $\Gamma=I m L o g<u_{k+\frac{2 \pi}{a} m}|W| u_{k n}>$
- Discretized parallel transport:
- Obtain overlap matrix: $S(k, k+\Delta k)$
- Singular Value Decomposition $S=U \Sigma V^{\dagger}$
- Rotate wavefunctions at $k+\Delta k$ by $T=$ $\left(U V^{\dagger}\right)^{\star}$
- Obtain $\Gamma=I m L o g<u_{k+\frac{2 \pi}{a} m}|W| u_{k n}>$

Geometric Phases in 1-d and 2-d

- Eigenvalues of Γ : Centre of Wannier function ("Bond")
- Eigenvectors of Γ : which bands make up the "Bond"

Electronic polarization: geometric phase

For electrons in a crystal: conventional definition of electronic polarization in terms of Bloch functions :

$$
P_{\alpha}=\frac{f q_{e}}{N \Omega} \sum_{k_{\alpha}} \sum_{m}^{M}\left\langle\psi_{\mathbf{k}, \mathbf{m}}^{\lambda}\right| r_{\alpha}\left|\psi_{\mathbf{k}, \mathbf{m}}^{\lambda}\right\rangle
$$

is ill defined.

Rather, the change of polarization $\triangle P_{\alpha}=$ $\int d \lambda\left(\frac{\partial P_{\alpha}}{\partial \lambda}\right)$ in an evolving system (λ being the evolving parameter) is a meaningful physical quantity.

In the derivative of P_{α} (as given above) w.r.t. λ, substituting perturbation expansion for the wavefunction derivatives and using the identity $\left.\frac{i}{\hbar}[H \widehat{(} \lambda), \widehat{r}\right]=\frac{1}{m_{e}} \widehat{p}$ we obtain :

$$
\frac{\partial P_{\alpha}^{\lambda}}{\partial \lambda}=
$$

$$
\begin{equation*}
\frac{-i e \hbar}{\Omega m_{e}} \sum_{k_{\alpha}} \sum_{m}^{o c c} \sum_{n}^{e m p t y} \frac{\left\langle\psi_{\mathbf{k}, \mathbf{m}}^{\lambda}\right| \hat{p}_{\alpha}\left|\psi_{\mathbf{k}, \mathbf{n}}^{\lambda}\right\rangle\left\langle\psi_{\mathbf{k}, \mathbf{n}}^{\lambda}\right| \frac{\partial V_{K S}^{\lambda}}{\partial \lambda}\left|\psi_{\mathbf{k}, \mathbf{m}}^{\lambda}\right\rangle}{\left(E_{k_{\alpha}, m}-E_{k_{\alpha}, n}\right)^{2}}+c c \tag{16}
\end{equation*}
$$

With identities: $\widehat{p_{\alpha}}=\frac{m_{e}}{\hbar}\left[\frac{\partial}{\partial k_{\alpha}}, H(\lambda)\right] ;\left[\frac{\partial}{\partial \lambda}, H_{k_{\alpha}}^{\lambda}\right]=$ $\frac{\partial V^{\lambda}}{\partial \lambda}$ and $\left[\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial k_{\alpha}}\right]=0$, followed by algebraic manipulation eqn.(16) yields:

$$
\triangle P_{\alpha}=\left.\frac{i f q_{e}}{8 \pi^{3}} \sum_{m}^{M} \int_{B Z} d k_{\alpha}\left\langle u_{\mathbf{k}, \mathbf{m}}^{\lambda}\right| \frac{\partial}{\partial k_{\alpha}}\left|u_{\mathbf{k}, \mathbf{m}}^{\lambda}\right\rangle\right|_{0} ^{1}
$$

$-\frac{i f q_{e}}{8 \pi^{3}} \sum_{m}^{M} \int_{B Z} d k_{\alpha}\left[\int_{0}^{1} d \lambda \frac{\partial}{\partial k_{\alpha}}\left\langle u_{\mathbf{k}, \mathbf{m}}^{\lambda}\right| \frac{\partial}{\partial \lambda}\left|u_{\mathbf{k}, \mathbf{m}}^{\lambda}\right\rangle\right](17)$
where $u_{\mathbf{k}, \mathbf{m}}^{\lambda}=e^{-i \mathbf{k} \cdot \mathbf{r}} \psi_{\mathbf{k}, \mathbf{m}}^{\lambda}$
Periodic gauge: $\psi_{\mathbf{k}, \mathbf{m}}^{\lambda}(\mathbf{r})=\psi_{\mathbf{k}+\overrightarrow{\mathbf{e}}_{\alpha} \mathbf{b}_{\alpha}, \mathbf{m}}^{(\mathbf{r}) \text { elim- }}$ inates the second term and gives:

$$
\begin{equation*}
P_{\alpha}^{\lambda}=\frac{i f q_{e}}{8 \pi^{3}} \sum_{m}^{M} \int_{B Z} d k_{\alpha}\left\langle u_{\mathbf{k}, \mathbf{m}}^{\lambda}\right| \frac{\partial}{\partial k_{\alpha}}\left|u_{\mathbf{k}, \mathbf{m}}^{\lambda}\right\rangle \tag{18}
\end{equation*}
$$

Same as the Zak phase expression [(8)] for single band.

In the discreet \mathbf{k} mesh in Brillouin zone P_{α} is
obtained by integrating Eqn.(9) :

$$
\begin{gather*}
P_{x}=-\frac{f q_{e}}{8 \pi^{3}} \int_{b_{y}, b_{z}} d k_{y} d k_{z} \\
\left\{\operatorname{Im} \operatorname{In} \Pi_{s=1}^{M} \operatorname{det}\left(\left\langle u_{k_{X_{s}}, m}^{\lambda} \mid u_{k_{X_{s+1}}, n}^{\lambda}\right\rangle\right)\right\} \tag{19}
\end{gather*}
$$

where $k_{X_{s}}$ forms a regular grid of $M k_{X}$ points for each (k_{y}, k_{z}).
Eqn (19) is used in the Berry phase calculation of polarization:
M : \# of k-points along the direction of P. N : \# of bands (size of the subspace).

Wannier function

Definition: Fourier transform of cell periodic wave functions.
$W_{n}(\mathbf{r}, \mathbf{R})=\sqrt{N} \Omega /(2 \pi)^{3} \int_{\mathrm{BZ}} \mathrm{e}^{\mathrm{ik} .(\mathrm{r}-\mathrm{R})} \mathbf{u}_{\mathrm{k}, \mathbf{n}}(\mathrm{r}) \mathrm{dk}$ (20)
$\mathbf{R} \rightarrow$ real space lattice vector.
Orthogonality relation:

$$
\int_{\Omega} d \mathbf{r} \mathbf{W}_{\mathbf{n}}^{*}(\mathbf{r}, \mathbf{R}) \mathbf{W}_{\mathbf{n}^{\prime}}\left(\mathbf{r}, \mathbf{R}^{\prime}\right)=\delta_{\mathbf{n \mathbf { n } ^ { \prime }}} \delta_{\mathbf{R} \mathbf{R}^{\prime}}
$$

Orthonormal set of Wannier function(WF) as basis:

$$
\begin{equation*}
u_{n \mathbf{k}}(\mathbf{r})=1 / \sqrt{N} \sum_{\mathbf{R}} \mathrm{e}^{\mathrm{i} \mathbf{k}(\mathbf{R}-\mathbf{r})} \mathbf{W}_{\mathbf{n}}(\mathbf{r}, \mathbf{R}) \tag{21}
\end{equation*}
$$

$u_{\mathrm{k}, \mathbf{n}}$ can have two types of phases:

1. Random phase due to diagonalization.
2. Gauge dependent phase of geometric origin.
\Rightarrow WFs are non-unique.

Localized WFs are obtained from wave functions which are cell periodic and differentiable through out the BZ.

Substituting (21) in (18) we get:

$$
\begin{equation*}
P_{\alpha}=\frac{f q_{e}}{\Omega} \sum_{n=1}^{M} \int r_{\alpha}\left|W_{n}(\mathbf{r})\right|^{2} \mathrm{dr} \tag{22}
\end{equation*}
$$

For any arbitrary direction α in real space, a unique set of gauge exist that diagonalize $e^{i \Gamma \alpha}$ [(15)].

The resultant WFs are perfectly localized in α direction. They are eigen states of projected position operator:

$$
\begin{equation*}
\hat{P} \widehat{r}_{\alpha} \hat{P} \tag{23}
\end{equation*}
$$

where \hat{P} is the projection operator onto the group of bands under consideration.

Centroid of these WFs:

$$
\frac{1}{\Omega} \int r_{\alpha}\left|W_{n}(\mathbf{r})\right|^{2} \mathbf{d r}=\mathbf{a} \gamma_{\mathbf{n}} / 2 \pi
$$

a is lattice constant and γ_{n} are eigen values of Γ_{α}.

In terms of parallel transported wave functions $\left\{v_{\mathbf{k}, \mathbf{n}}\right\}$ obtained from the energy eigen states $\left\{u_{\mathbf{k}, \mathbf{n}}\right\}$ for multibands in 1D (chosen to be α) the desired unique gauge at each k_{α} :

$$
\begin{equation*}
U_{n m, k_{\alpha}}=\exp \left\{-i k_{\alpha}\left(\frac{\gamma_{n} a}{2 \pi}\right)\right\} M_{m n}^{\star} \tag{24}
\end{equation*}
$$

M diagonalizes Γ_{α}.
Generalized expression for WF for insulator as well as metals at temperature T :

$$
\begin{gather*}
\left|W_{n}^{T}\left(r_{\alpha}, R\right)\right\rangle=\int d k_{\alpha} \sum_{m} e^{i k_{\alpha}\left(r_{\alpha}-R\right)} \\
C_{n m}^{k_{\alpha}}\left[f\left(E_{m k_{\alpha}}, T\right)\right]^{\frac{1}{2}}\left|u_{\mathbf{k}, \mathbf{m}}\right\rangle \tag{25}
\end{gather*}
$$

$f\left(E_{m k}, T\right)$ is FD distribution and

$$
C^{k_{\alpha}}=U^{k_{\alpha}} R^{k_{\alpha}}
$$

R : unitary transformation from energy eigen states to parallel transported states.

For 3-D crystal systems : three projected position operators or Γ matrices do not commute.
\Rightarrow No unique gauge that gives WFs perfectly localized in all directions.

Maximally localized Wannier function(MLWF):

A conceptual extension of Foster-Boys localization scheme to periodic systems.

MLWFs obtained through variational minimization of second moment (cumulant) of squared WFs w.r.t. evolving unitary transformation matrix at each \mathbf{k}

References:

- M. V. Berry Proc. R. London (1984)
- Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)
- J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988)
- J. Zak, phys. Rev. Lett. 62, 2747 (1989)
- R. D. KingSmith, and David Vanderbilt, Phys. rev. B 47, 1651 (1993)
- R. Resta, Rev. Mod. Phys. 66, 899 (1994)
- G. Wannier, Phys. rev. 52, 191 (1937)
- W. Kohn, Phys. Rev. 115, 809 (1959)
- W. Kohn, Phys. Rev. B 7, 4388 (1973)
- W. Kohn and J. R. Onffroy, Phys. Rev. B 8, 2485 (1973)
- N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
- J. Bhattacharjee and U. V. Waghmare, Phys. Rev. B 71, 045106 (2005)

