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OUTLINE

Vibrations and interatomic force constants
(IFC)

Extended periodic versus confined Systems

IFCs of extended periodic systems

Thermodynamic properties:
— Harmonic description
— Weak anharmonic effects

— Strong anharmonic effects



Introduction

e Vibrations:
- Brillouin, Infra-Red and Raman spectro-
scopies
Thermal properties
Ferroelectricity, pyroelectricity (piezoelectrics)
Superconductivity
Transport properties

e Force constant matrices:
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— Frozen phonon calculations
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— Linear responseﬁcalculag:ions
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e K: Nature of interaction: (1) anisotropy
(2) short-range (covalent) vs. long-range
(ionic)



Confined vs. Extended Systems

e Confined System: Eg. molecule, cluster
- Number of vibrations = 3 x N,
- Force constants matrices between two
atoms directly relate to their interaction
potential.

e Extended periodic systems: Eg. Crystal
- Number of vibrations = o
3% Ng per unit cell, g€ BZ.
- Image effects in the force constants:
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- force constant matrix between two atoms
depends on the interaction between them
AND their images.



Phonons in Periodic Systems

e Phonon bands (analogous to electrons)
w(q,l), §€ BZ, 1 € [1,3Ng]
e;(k|q,1): Ith band eigenvector at ¢,
1 and k denote Cartesian and atom indices
obtained with diagonalization of dynami-
cal matrix:
Aij(lilﬂlq(j)Z DFT-LR

e Interatomic force constants:
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Assuming short-ranged interactions,
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for é + Tk — 7_';4 € Box(N1N>N3).
Interactions are not short-ranged,;
Effects of images enter. eg. Dipolar in-
teractions, Fridel oscillations in metals.



IFCs in Periodic Systems

e Decompose the dynamical matrices into
(a) long-ranged part (treated analytically).
(b) remaining short-range part (treated
with a grid Fourier transform).

e Insulators: long-ranged interactions man-
ifest in the LO-TO splitting (nonanalytic-
ity) in w(g,l) at ¢= O:
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e — Limiting behavior of dipole-dipole in-
teratomic forces, with e~ 1 as a metric in
real-space
® [y = Zj Z;:’ijei_leTlij
e evaluated using Ewald summation tech-
nique.

Ref. X.Gonze et al, PRB 50, 13035 (1994).



Phonons in periodic systems

Obtain phonons at wavevectors ¢ € (N1, No, N3)
grid (BZ) using DFT-LR: A(q)

Use € and Z*kij obtained from DFT-LR
at (¢ = (000)), to model dipolar inter-
atomic interaction: A%(g)

Obtain short-range part of the dynamical
matrix AE(q) = A(q) — A%(q)

Fourier (discrete) transform ASE(J) to ob-
tain real-space interatomic force constants:
b

Phonons at any ¢ can now be obtained:
A(§) = A%(F) + Fourier(®P)

Thermodynamic quantities can be obtained
with access to A on a fine grid of q.



Thermodynamic Properties

Phonons: primary contributors to thermo-
dynamic properties

electrons: metals at low temperatures.

Many properties depend on only phonon
frequencies.

S f(w(§,1)) = 3NN /O T (w)g(w)dw
q,l

Normalized phonon density of states:
g(w) = ﬁzqﬂ 6(w —w(q,1))

Partition function:
hw(q,1)
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Helmholtz free energy:
(obtained as In of Z)

hw(q, 1)
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Internal energy:
obtained using (Ashcroft and Mermin)
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Specific heat (constant volume):

(derivative of U with respect to T)
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Entropy: S= (U - F)/T
Wmaz = hw hw(q, 1)

Co = 3N Nk / th
v Nk | g et T
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Note that phonons have been treated here
within harmonic approximation. One can
obtain variation in F', U, S and Cy with T,
but no thermal expansion!

To determine structure, bulk modulus, Cj
as a function of T', one has to include an-
harmonic interactions among phonons.

A simple approach - quasi-harmonic ap-
proximation:

Free energy is calculated using above for-
malism as a function of structural param-
eters and the structure is obtained by free-
energy minimization (eg. Ref. Xie et al, PRB
59, 965 (99)).



Thermodynamics: thermal expansion

e V(T) determined from a quasi-harmonic
approximation can yield o (thermal expan-
sion coefficient).

e In terms of density of states:
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e Atomic temperature factor (X-ray diffrac-
tion) e~ W)
Structure factor Fp = ), e~ W (1) iG-7x
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Local harmonic approximation

Ref. Lesar et al, PRL 63, 624 (1989).

Classical limit (= — 0)

Work with only on-site (local) harmonic
interactions, neglect coupling between vi-
brations of different atoms.

Given a perfect crystal at a volume (struc-
ture) and T, determine its Helmholtz free
energy:

A = —Zumﬁ/(frgﬂ,) + 3kBTZLn( L),
2 KK K kBT

where D; = (]; wix)?2.

First-principles IFCs (local) can be directly
input to this.



e Stress and electric field dependence of var-
lous properties can be determined by aug-
menting the free energy function:

F = Fy— Y Z 045€45 — Z EiZ:iijj +Eelastic
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See: $ABINIT /Infos/Theory/vanderbilt-anaddb-notes.pdf

e Practically, modelling is a good idea: Tay-
lor expand the free energy functional in
terms of 7, e;; and E; and parameters in
the expansion can be obtained from DFT
calculations.

Ref. Hill and Waghmare.



Thermodynamics: strong anharmonicity

Ref. Rabe and Waghmare, PRB 55, 13237 (1995).

e Determine the full phonon dispersion and
examine it along high symmetry lines.

e Identify the softest vibrational modes.

e Carry out symmetry analyses of modes at
high symmetry g—points.

e Determine the symmetry of localized lat-
tice Wannier function (centre and trans-
formation property) that would span the
subspace of softest modes.

e Determine the precise LWF by fitting to
normal mode eigenvectors at high symme-
try points.



e Write total energy as a Taylor expansion
in lattice Wannier function coordinates and
strain (and possibly harmonic expansion of
other modes).

e Parameters in this expansion need be de-
termined from DFT.

e Carry out large-scale Monte Carlo or Molec-
ular Dynamics simulations to study ther-
modynamic properties.



Construction of Model for Transition

e High symmetry phase: reference structure
{ d;; }: atomic displacements
{ eqp }: strain
Ejge = Eh({czw}) + Eanh({g’;ﬁ'}) + Eelastic

E— Eiot
stable

Ay : stable modes

4 : unstable modes

—k A() characterstic of structural u
phase transition unsiable

Bt = Epng(&) + Eanhng(§i) + Ep A (u;)

7= [ Miduidgieap(~Eyar) = Zp, % Zn,

* Focus on the lowest energy subspace Ag,
relevant to the phase transition.

Eimodel = Eh,/\o + Eanh,/\o + Estrain

E.0d4e1 1S Projection of Ej,; onto Ag subspace
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Resulting Model: Form

Model

H(E:) Internal Distortions
17 (atomic displacements/phonon)

.

y Homogeneous Distortions of the unit cell
+|H(e OCB . i
(strain) Elastic energy

\

)Coupling between strain and]

+ %( i ’,eocB phonons

+

H(&i,0 ) .Composu'lonal Order, o .
> 17 1ts local field effects )

Polarization: P o X &;
Cubic: P=(0, 0, 0)
Tetragonal: P=(0,0,1)p
Orthorhombic: P=(1,1,0) p
Rhombohedral: P=(1, 1, 1)p



Summary

Phonons: thermodynamic properties

Interatomic force constants: nature of in-
teractions

IFCs of periodic systems:
long ranged 4+ short ranged

— Access to full phonon dispersion

T hermodynamics:

— Quasi-harmonic approximation

— Lattice Wannier functions
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