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OUTLINE

• Vibrations and interatomic force constants

(IFC)

• Extended periodic versus confined Systems

• IFCs of extended periodic systems

• Thermodynamic properties:

– Harmonic description

– Weak anharmonic effects

– Strong anharmonic effects



Introduction

• Vibrations:
- Brillouin, Infra-Red and Raman spectro-
scopies
- Thermal properties
- Ferroelectricity, pyroelectricity (piezoelectrics)
- Superconductivity
- Transport properties

• Force constant matrices:

K
αβ
κκ′ =

∂Fκα

∂τκ′β
→ Frozen phonon calculations

K
αβ
κκ′ =

∂2E

∂τκα∂τκ′β
→ Linear response calculations
Eigenvalues of Dαβ

κκ′ = K
αβ
κκ′/

√
MκMκ′: ω

2
µ

• K: Nature of interaction: (1) anisotropy
(2) short-range (covalent) vs. long-range
(ionic)



Confined vs. Extended Systems

• Confined System: Eg. molecule, cluster
- Number of vibrations = 3 ∗Na
- Force constants matrices between two
atoms directly relate to their interaction
potential.

• Extended periodic systems: Eg. Crystal
- Number of vibrations = ∞

3 ∗Na per unit cell, ~q ∈ BZ.
- Image effects in the force constants:
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- force constant matrix between two atoms
depends on the interaction between them
AND their images.



Phonons in Periodic Systems

• Phonon bands (analogous to electrons)
ω(~q, l), ~q ∈ BZ, l ∈ [1,3Na]
ei(κ|~q, l): lth band eigenvector at ~q,
i and κ denote Cartesian and atom indices
obtained with diagonalization of dynami-
cal matrix:
Aij(κκ

′|~q): DFT-LR

• Interatomic force constants:

Φij(0κ; ~Rκ′) =
1

ΩBZ

∫

BZ
Aij(κκ

′|~q)e−i~q·~Rd3~q

Assuming short-ranged interactions,

Φij(0κ; ~Rκ′) =
∑

~q∈Grid(N1N2N3)

Aij(κκ
′|~q)e−i~q·~Rd3~q

for ~R+ ~τκ − ~τκ′ ∈ Box(N1N2N3).
Interactions are not short-ranged;
Effects of images enter. eg. Dipolar in-
teractions, Fridel oscillations in metals.



IFCs in Periodic Systems

• Decompose the dynamical matrices into

(a) long-ranged part (treated analytically).

(b) remaining short-range part (treated

with a grid Fourier transform).

• Insulators: long-ranged interactions man-

ifest in the LO-TO splitting (nonanalytic-

ity) in ω(~q, l) at ~q = ~0:

Addij (κκ′|~q → ~0) =
4π

Ω

(
∑
k Z
∗
κ,ikqk)(

∑
k Z
∗
κ′,jkqk)

∑
kl qkεklql

• ↔ Limiting behavior of dipole-dipole in-

teratomic forces, with ε−1 as a metric in

real-space

• µκi =
∑
j Z
∗
κ,ijε

−1
ij ∆τκj

• evaluated using Ewald summation tech-

nique.

Ref. X.Gonze et al, PRB 50, 13035 (1994).



Phonons in periodic systems

1 Obtain phonons at wavevectors ~q ∈ (N1, N2, N3)
grid (BZ) using DFT-LR: A(~q)

2 Use ε and Z∗κij obtained from DFT-LR
at Γ (~q = (000)), to model dipolar inter-
atomic interaction: Add(~q)

3 Obtain short-range part of the dynamical
matrix ASR(~q) = A(~q)−Add(~q)

4 Fourier (discrete) transform ASR(~q) to ob-
tain real-space interatomic force constants:
Φ

5 Phonons at any ~q can now be obtained:
A(~q) = Add(~q) + Fourier(Φ)

6 Thermodynamic quantities can be obtained
with access to A on a fine grid of ~q.



Thermodynamic Properties

• Phonons: primary contributors to thermo-

dynamic properties

electrons: metals at low temperatures.

• Many properties depend on only phonon

frequencies.
∑

~q,l

f(ω(~q, l)) = 3NaN
∫ ωmax

0
f(ω)g(ω)dω

• Normalized phonon density of states:

g(ω) = 1
3NaN

∑
~q,l δ(ω − ω(~q, l))

• Partition function:

Z =
∏

~q,l

(2sinh(
h̄ω(~q, l)

2kBT
))−1



• Helmholtz free energy:

(obtained as ln of Z)

∆F = 3NaNkBT
∫ ωmax

0
ln(2sinh(

h̄ω(~q, l)

2kBT
))g(ω)dω

• Internal energy:

obtained using (Ashcroft and Mermin)

U = Eeq +
∑

~q,l

1

2
h̄ω(~ql)(1 +

2

e
h̄ω(~q,l)
kBT − 1

)

Thus,

∆U = 3NaN
h̄

2

∫ ωmax
0

ωcoth(
h̄ω(~q, l)

2kBT
)g(ω)dω

• Specific heat (constant volume):

(derivative of U with respect to T)

Cv = 3NaNkB

∫ ωmax
0

(
h̄ω

2kBT
)2

csch2(
h̄ω(~q, l)

2kBT
)g(ω)dω



• Entropy: S = (U − F )/T

Cv = 3NaNkB

∫ ωmax
0

[
h̄ω

2kBT
coth(

h̄ω(~q, l)

2kBT
)

−ln(2sinh(
h̄ω(~q, l)

2kBT
))]g(ω)dω

• Note that phonons have been treated here
within harmonic approximation. One can
obtain variation in F , U , S and Cv with T ,
but no thermal expansion!

• To determine structure, bulk modulus, Cp
as a function of T , one has to include an-
harmonic interactions among phonons.

• A simple approach - quasi-harmonic ap-
proximation:
Free energy is calculated using above for-
malism as a function of structural param-
eters and the structure is obtained by free-
energy minimization (eg. Ref. Xie et al, PRB

59, 965 (99)).



Thermodynamics: thermal expansion

• V (T ) determined from a quasi-harmonic
approximation can yield α (thermal expan-
sion coefficient).

• In terms of density of states:

α =
NaNkB
B

∫
dω
∂g(ω)

∂Ω
(ln(e

h̄ω
kBT − 1)

− h̄ω

kBT

e
h̄ω
kBT

e
h̄ω
kBT − 1

)

• Atomic temperature factor (X-ray diffrac-
tion) e−W (κ)

Structure factor FT =
∑
κ e
−W (κ)ei

~G·~τκ

e−W (κ) = exp(−1

2

∑

ij

Bij(κ)GiGj),

Bij =
1

N

∑

~ql

h̄

2ω
coth(

h̄ω

2kBT
)ei(κ|~ql)e∗j(κ|~ql)



Local harmonic approximation

Ref. Lesar et al, PRL 63, 624 (1989).

• Classical limit ( h̄→ 0)

• Work with only on-site (local) harmonic
interactions, neglect coupling between vi-
brations of different atoms.

• Given a perfect crystal at a volume (struc-
ture) and T , determine its Helmholtz free
energy:

A =
1

2

1∑

κκ′
uκκ′(r

0
κκ′) + 3kBT

∑

κ
Ln(

D
1/6
i

kBT
),

where Di = (
∏
i ωiκ)2.

• First-principles IFCs (local) can be directly
input to this.



• stress and electric field dependence of var-

ious properties can be determined by aug-

menting the free energy function:

F = F0−Ω
∑

ij

σijeij−
∑

ijκ

EiZ
∗
κijτκj+Eelastic

−Ω

4π

∑

ij

EiεijEj−Ω
∑

ijk

eijγijkEk+
∑

ijκk

Lijκkeijτκk

See: $ABINIT/Infos/Theory/vanderbilt-anaddb-notes.pdf

• Practically, modelling is a good idea: Tay-

lor expand the free energy functional in

terms of ~τ , eij and Ei and parameters in

the expansion can be obtained from DFT

calculations.

Ref. Hill and Waghmare.



Thermodynamics: strong anharmonicity

Ref. Rabe and Waghmare, PRB 55, 13237 (1995).

• Determine the full phonon dispersion and

examine it along high symmetry lines.

• Identify the softest vibrational modes.

• Carry out symmetry analyses of modes at

high symmetry q−points.

• Determine the symmetry of localized lat-

tice Wannier function (centre and trans-

formation property) that would span the

subspace of softest modes.

• Determine the precise LWF by fitting to

normal mode eigenvectors at high symme-

try points.



• Write total energy as a Taylor expansion

in lattice Wannier function coordinates and

strain (and possibly harmonic expansion of

other modes).

• Parameters in this expansion need be de-

termined from DFT.

• Carry out large-scale Monte Carlo or Molec-

ular Dynamics simulations to study ther-

modynamic properties.



Construction of Model for Transition

• High symmetry phase: reference structure

{ ~diτ }: atomic displacements

{ eαβ }: strain

Elat = Eh({~diτ}) + Eanh({~diτ}) + Eelastic

Etot

u

stable

unstable
k

ω
2 Λ

Λ

s

0

: stable modes
: unstable modes
characterstic of structural 
phase transition

Elat = Eh,Λ0
(ξi) + Eanh,Λ0

(ξi) + Eh,Λs(ui)

Z =
∫

Πiduidξiexp(−Elat) = ZΛ0
× ZΛs

? Focus on the lowest energy subspace Λ0,

relevant to the phase transition.

Emodel = Eh,Λ0
+ Eanh,Λ0

+ Estrain

Emodel is Projection of Elat onto Λ0 subspace



Resulting Model

PbTiO3 BaTiO3

ξ

Classical Spins



Resulting Model: Form

ξ iH( )

H( )αβe

ξ iH( ), eαβ,

ξ iα Σ

ξ i

Cubic: P = (0, 0, 0)

Rhombohedral: P = (1, 1, 1)p
Orthorhombic: P = (1, 1, 0) p
Tetragonal:  P = (0, 0, 1) p

,

+

+

+ Compositional Order,
its local field effects

σ iH( , σι, )

Elastic energy

Internal Distortions
(atomic displacements/phonon)

Homogeneous Distortions of the unit cell
(strain)

Coupling between strain and
phonons

Polarization:  P  

Model



Summary

• Phonons: thermodynamic properties

• Interatomic force constants: nature of in-

teractions

• IFCs of periodic systems:

long ranged + short ranged

• → Access to full phonon dispersion

• Thermodynamics:

– Quasi-harmonic approximation

– Lattice Wannier functions



References

• N. W. Ashcroft and N. D. Mermin, Solid

State Physics.

• X. Gonze, J.-C. Charlier, D.C. Allan and

M.P. Teter, PRB 50, 13035 (1994).

• C. Lee and X. Gonze, PRB 51, 8610 (1995).

• R. Lesar, R. Najafabadi, D. Srolovitz, PRL

63, 624 (1989).

• N.A. Hill and U.V. Waghmare, PRB 62,

8802 (2000).

• K.M. Rabe and U.V. Waghmare, PRB 52,

13237 (1995).


