Finite electric field

Ivo Souza

Univ. California Berkeley

(Part of the material based on a talk by David Vanderbilt and review article by Vanderbilt & Resta)

Finite electric fields: Motivation

Applications:

- Finite difference calculation of field derivatives @ E=0 (alternative to density-functional perturbation theory)
- Truly <u>finite</u>-field effects
 - →Field-induced structural phase transitons
 - →Bloch oscillations
 - >Electro-absorption (Franz-Keldysh effect)

Insulators in electric fields: The problem

Easy to do in practice: GaAs 100 V Zener But ill-defined tunneling in principle: L₊ $|L_t = E_g / \mathcal{E}$ 'sample For small E-field, $\tau_{Zener} \gg \tau_{Universe}$; is it OK?

Electric fields: The problem

$$H = H_0 - e \mathcal{E} x = \frac{p^2}{2m} + \widetilde{V}(x),$$
$$\widetilde{V}(x) = V_{per}(x) - e \mathcal{E} x$$

Problems specific to crystals

- $\widetilde{V}(x)$ is not periodic
- Bloch's theorem does not apply
- *E* acts as a singular perturbation on eigenfunctions
- $\widetilde{V}(x)$ not bounded from below
- There is no ground state

Common to both crystals and finite systems

Finite systems in electric fields: The problem

Auto-ionization:

- Sharp eigenstates turn into resonances with finite width
- Finite lifetime: electrons eventually escape to the right (quasibound resonance decays into an unbound runaway solution)

The solution (finite systems)

Use a localized-orbital basis that does not extend into the vaccum

Does not work for crystals, since sample (and hence the basis) covers entire space, when using periodic boundary conditions

Another solution (finite systems)

Sawtooth potential over a large supercell; place molecule at the center, far from the sharp edges of V(r) close to boundaries:

- Does not work for crystals, since sharp edges would necessarily occur inside the sample
- Even for molecules, if L is large there is a critical field above which electrons escape from molecule to right side of box

A possible strategy for insulating crystals

- Start from the insulating ground state
- Slowly turn on a small E-field (tunneling is negligible)

Problem: need to solve a time-dependent Schrodinger eqn. (expensive, result depends on the time-history of switching on E-field)

Can we solve for the field-polarized state directly, as for finite systems?

Practical solution for insulating crystals

- Seek long-lived resonance
- Described by polarized Bloch functions $\{\psi_{nk}\}$
- Minimize the "electric enthalpy" functional w.r. $\{\psi_{nk}\}$

$$F = E_{KS} - \Omega \mathcal{E} \cdot \boldsymbol{P}$$

$$E_{KS} = \frac{1}{N} \sum_{nk} \langle \psi_{nk} | T + V_{per} | \psi_{nk} \rangle - Usual \text{ Kohn-Sham}$$
$$P = P[\hat{n}] = P[\{\psi_{nk}\}] - Berry-phase polarization$$

$$F[\{\psi_{nk}\}] = \langle H \rangle, \qquad H = T + V_{per} - e\mathcal{E} \cdot \mathbf{r}$$

 $\langle -e\mathcal{E}\cdot \boldsymbol{r}\rangle = -\mathcal{E}\cdot \boldsymbol{d}$ $\boldsymbol{P} = \frac{\boldsymbol{d}}{\Omega} = \frac{-e\langle \boldsymbol{r}\rangle}{\Omega}$: dipole per unit volume

Berry-phase formula \Rightarrow how to evaluate $\langle \boldsymbol{r} \rangle$ within PBCs!

Justification

Seek long-lived metastable periodic solution • Want periodic charge density:

$$\rho(\mathbf{r}) = \rho(\mathbf{r} + \mathbf{R})$$

• Want periodic one-particle density matrix:

$$n(\mathbf{r},\mathbf{r'})=n(\mathbf{r}+\mathbf{R},\mathbf{r'}+\mathbf{R})$$

• Use Bloch representation of density matrix:

$$n(\mathbf{r},\mathbf{r}') = \langle \mathbf{r} | \hat{n} | \mathbf{r}' \rangle = \sum_{nk} \psi_{nk}(\mathbf{r}) \psi_{nk}^{*}(\mathbf{r}')$$

even though $\{\psi_{nk}\}$ are not eigenstates!

Derivation of Berry-phase P: Wannier functions

Bloch functions Ψ_{nk} :

(Fourier transform):

- Labeled by band *n* and crystal momentum *k*
- Localized in *k*, extended in *r*

Wannier functions W_{nR} :

- Labeled by band *n* and unit cell *R*
- Localized in *r*, extended in *k*

Related by a unitary transformation
(Fourier transform):
$$|w_{nR}\rangle = \frac{\Omega}{(2\pi)^3} \int_{BZ} d\mathbf{k} e^{i\mathbf{k}\cdot\mathbf{R}} |\psi_{nk}\rangle$$

For insulators only (M filled bands), can use a Wannier representation of the density matrix:

$$n(\mathbf{r},\mathbf{r}') = \sum_{n=1}^{M} \sum_{\mathbf{k}} w_{n\mathbf{R}}(\mathbf{r}) w_{n\mathbf{R}}^{*}(\mathbf{r}')$$

Advantage: WFs are localized in $r \Rightarrow$ evaluation of $\langle r \rangle$ becomes simple

$$\boldsymbol{P} = \boldsymbol{P}[\hat{n}] = \boldsymbol{P}[\{w_{n\boldsymbol{R}}\}]$$

$$\boldsymbol{P} = \frac{\boldsymbol{d}}{\Omega} = \frac{-e\langle \boldsymbol{r} \rangle}{\Omega} \qquad \langle \boldsymbol{r} \rangle = Tr_c(\hat{n}\,\hat{\boldsymbol{r}})$$

Trace per unit cell (*r* representation):

$$Tr_c \hat{O} = \frac{1}{N} \int_{all \ space} \langle r | \hat{O} | r \rangle dr \qquad (N = \# \text{ cells})$$

$$\langle \boldsymbol{r} | \hat{\boldsymbol{n}} \hat{\boldsymbol{r}} | \boldsymbol{r} \rangle = \langle \boldsymbol{r} | \hat{\boldsymbol{n}} \int d\boldsymbol{r}' | \boldsymbol{r}' \rangle \langle \boldsymbol{r}' | \hat{\boldsymbol{r}} | \boldsymbol{r} \rangle \qquad \langle \boldsymbol{r}' | \hat{\boldsymbol{r}} | \boldsymbol{r} \rangle = \boldsymbol{r} \, \delta(\boldsymbol{r}' - \boldsymbol{r})$$

$$\equiv \hat{\boldsymbol{1}}$$

$$\Rightarrow \langle \boldsymbol{r} | \hat{\boldsymbol{n}} \hat{\boldsymbol{r}} | \boldsymbol{r} \rangle = \boldsymbol{n}(\boldsymbol{r}, \boldsymbol{r}) \boldsymbol{r} \qquad \langle \boldsymbol{r} \rangle = \frac{1}{N} \int d\boldsymbol{r} \, \boldsymbol{n}(\boldsymbol{r}, \boldsymbol{r}) \boldsymbol{r}$$

$$\langle \boldsymbol{r} \rangle = \frac{1}{N} \sum_{n} \sum_{\boldsymbol{R}} \int d\boldsymbol{r} \, w_{n\boldsymbol{R}}^{*}(\boldsymbol{r}) \boldsymbol{r} \, w_{n\boldsymbol{R}}(\boldsymbol{r})$$

r=r'-R

$$\langle \boldsymbol{r} \rangle = \frac{1}{N} \sum_{n} \sum_{\boldsymbol{R}} \int d\boldsymbol{r}' w_{n\boldsymbol{R}}^{*}(\boldsymbol{r}'-\boldsymbol{R}) \boldsymbol{r} w_{n\boldsymbol{R}}(\boldsymbol{r}'-\boldsymbol{R})$$

$$\langle \boldsymbol{r} \rangle = \frac{1}{N} \sum_{n} \sum_{\boldsymbol{R}} \int d\boldsymbol{r}' w_{n\boldsymbol{R}}^{*}(\boldsymbol{r}' - \boldsymbol{R}) \boldsymbol{r} w_{n\boldsymbol{R}}(\boldsymbol{r}' - \boldsymbol{R})$$

$$w_{nR}(\mathbf{r}'-\mathbf{R}) = w_{n0}(\mathbf{r}')$$

$$\langle \mathbf{r} \rangle = \sum_{n} \langle w_{n0} | \hat{\mathbf{r}} | \mathbf{r} w_{n0} \rangle = \sum_{n} \mathbf{r}_{n0}$$
Center of charge
of Wannier fet.
$$P_{el} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e}{\Omega} \sum_{n} \mathbf{r}_{n0}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-e \langle \mathbf{r} \rangle}{\Omega} = \frac{-e \langle \mathbf{r} \rangle}{\Omega}$$
Point ions
$$O = \frac{-$$

 $\boldsymbol{P}_{total} = \boldsymbol{P}_{el} + \boldsymbol{P}_{ion}$

Derivation of Berry-phase P: Bloch functions

In practice want to compute P from Bloch functions, not WFs

1-dim, 1 band:
$$P = \frac{-e x_0}{a}$$
 $x_0 = \langle w_0 | \hat{x} | w_0 \rangle$

~ ...

$$|w_0\rangle = \frac{a}{2\pi} \int_0^{2\pi/a} dk \, e^{ikx} |u_k\rangle \qquad |\psi_k\rangle = e^{ikx} |u_k\rangle$$

$$x|w_{0}\rangle = \frac{a}{2\pi} \int dk (-i\partial_{k}e^{ikx})|u_{k}\rangle = \frac{a}{2\pi} \int dk e^{ikx}i|\partial_{k}u_{k}\rangle$$

Integration by parts

$$x_0 = (\dots) = \frac{a}{2\pi} \int_0^{2\pi/a} dk \langle u_k | i \partial_k | u_k \rangle \text{ Heuristically: } \hat{x} \to i \partial_k$$

$$x_0 = \frac{a\phi}{2\pi}$$
 $\phi = -\Im \int_0^{2\pi/a} dk \langle u_k | \partial_k u_k \rangle$ Berry phase

Periodic gauge: $|\psi_{2\pi/a}\rangle = |\psi_0\rangle \implies BZ$ is a closed ring

Berry phase ϕ is a global phase property of the Bloch band as *k* is carried around BZ

Practical calculations on a discrete *k*-mesh:

$$\phi \simeq -\Im \ln \prod_{j=0}^{M-1} \langle u_{k_j} | u_{k_{j+1}} \rangle$$

Overall phase factor of each Bloch state is arbitrary and not smooth as a function of k:

"Gauge phase" $|u_{k_j}\rangle \rightarrow e^{i\theta_{k_j}}|u_{k_j}\rangle$

$$\langle u_{k_j} | \rightarrow e^{-i \theta_{k_j}} \langle u_{k_j} |$$

Each state appears twice: once as a bra and once as a ket:

$$\langle u_{\boldsymbol{k}_0}|u_{\boldsymbol{k}_1}\rangle\langle u_{\boldsymbol{k}_1}|u_{\boldsymbol{k}_2}\rangle\ldots\langle u_{\boldsymbol{k}_{j-1}}|e^{i\theta_{\boldsymbol{k}_j}}u_{\boldsymbol{k}_j}\rangle\langle e^{-i\theta_{\boldsymbol{k}_j}}u_{\boldsymbol{k}_j}|u_{\boldsymbol{k}_{j+1}}\rangle\ldots\langle u_{\boldsymbol{k}_{j-1}}|u_{\boldsymbol{k}_j}\rangle$$

⇒ Gauge phases drop out! (Clever discretization)

Important: set $|\psi_{k_j}\rangle = |\psi_{k_0}\rangle \Leftrightarrow |u_{k_j}\rangle = e^{-i\mathbf{G}\cdot\mathbf{r}}|u_{k_0}\rangle$ "periodic gauge"

Electric fields: Implementation

Minimize the electric enthalpy functional

 $F = E_{KS} - a \mathcal{E} P$ $= \frac{1}{N} \sum_{nk} \langle \psi_{nk} | T + V_{per} | \psi_{nk} \rangle - \frac{ea\mathcal{E}}{2\pi} \Im \ln \prod_{j=0}^{M-1} \langle u_{k_j} | u_{k_{j+1}} \rangle$

The $\mathcal{E} \cdot \mathbf{P}$ term introduces <u>coupling</u> between *k*-points

Can use standard methods to find the minimum

- Conjugate-gradients [Souza, Íñiguez and Vanderbilt '02]
- Car-Parrinello [Umari and Pasquarello '02]

Example: update each $|u_k\rangle$ by steepest-descent:

- Find the gradient vector $|G_k\rangle = \frac{\delta F}{\langle \delta u_k|}$
- Trial updated state:
 - $|u_k^{(new)}\rangle(\theta) = \cos\theta |u_k\rangle + \sin\theta |G_k\rangle$
- Minimize $F(\theta)$
- Proceed to next band or k-point

 $E_{KS}(\theta) \quad [A \propto E_{gap}/N]$ $= a \not \in P(\theta) \quad [avg. slope \propto \not \in]$ $= F(\theta)$

- $F(\theta)$ has local minima only!
- They disappear when

 $ea \mathcal{E} > E_{gap} / N$

 \Rightarrow onset of Zener tunneling!

- For given E-field, there is a limit on *k*-point sampling (and vice-versa)
- Length scale $L_c = 1/\Delta k$
- Meaning: L_c = supercell dimension

Forces and stress

$$F_{i} = -\frac{d F}{d r_{i}} = -\frac{\partial F}{\partial r_{i}} - \sum_{k,n} \frac{\left|\delta u_{kn}\right\rangle}{\partial r_{i}} \frac{\delta F}{\left\langle\delta u_{kn}\right|}$$

At solution $\frac{\delta F}{\left\langle\delta u_{kn}\right|} = 0 \implies F_{i} = -\frac{\partial F}{\partial r_{i}}$

(Implicit dependence via wavefunctions can be dropped: Hellmann-Feynmann)

$$F_{i} = -\frac{\partial F}{\partial r_{i}} = -\frac{\partial \left[E_{KS} - \Omega \mathcal{E} \cdot (P_{el} + P_{ion})\right]}{\partial r_{i}} = -\frac{\partial E_{KS}}{\partial r_{i}} + e Z_{i}^{(ion)} \mathcal{E}$$

$$\frac{\partial P_{el}}{\partial r_{i}} = 0 \quad (\text{Berry phase only depends} \\ \text{explicitly on wavefunctions}) \quad \text{already coded}$$

(Similar arguments for stress)