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Applications:

● Finite difference calculation of field derivatives @ E=0
(alternative to density-functional perturbation theory)
● Truly finite-field effects

➔Field-induced structural phase transitons
➔Bloch oscillations
➔Electro-absorption (Franz-Keldysh effect)

Finite electric fields: Motivation
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Insulators in electric fields: The problem

Easy to do in practice:

But ill-defined 
in principle:

Zener
tunneling

For small E-field,                              ; is it OK?Zener≫Universe

Lsample

Lt=E g /E



Electric fields: The problem

H=H 0−e x= p2

2 m
V  x  ,

V  x=V per  x −e x
●           is not periodic
● Bloch's theorem does not apply
●     acts as a singular perturbation   
  on eigenfunctions
●           not bounded from below
● There is no ground state

V  x

V  x 

Problems specific to crystals

Common to both crystals 
and finite systems
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Tunnelling

V  x=V atom x V  x =V atom x−e x

{Bound
eigenstates{ {Quasi-bound

resonances

Finite systems in electric fields: The problem

Auto-ionization: 
● Sharp eigenstates turn into resonances with finite width
● Finite lifetime: electrons eventually escape to the right (quasi-
bound resonance decays into an unbound runaway solution)
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The solution (finite systems)

Use a localized-orbital basis that does not extend into the vaccum

Does not work for crystals, since sample (and hence the basis) 
covers entire space, when using periodic boundary conditions



Another solution (finite systems)

L

Sawtooth potential over a large supercell; place molecule at the 
center, far from the sharp edges of V(r) close to boundaries:

● Does not work for crystals, since sharp edges would necessarily 
occur inside the sample
● Even for molecules, if L is large there is a critical field above  
which electrons escape from molecule to right side of box



A possible strategy for insulating crystals

● Start from the insulating ground state
● Slowly turn on a small E-field (tunneling is negligible)

         remains periodic under  
homogeneous E-field

r 

Problem: need to solve a time-dependent Schrodinger eqn. (expensive,
result depends on the time-history of switching on E-field)

Can we solve for the field-polarized state directly, as for finite systems?



Practical solution for insulating crystals

● Seek long-lived resonance
● Described by polarized Bloch functions 
● Minimize the “electric enthalpy” functional w.r.t. 

F=E KS− ⋅P

E KS=
1
N ∑n k

〈n k∣TV per∣n k 〉 Usual Kohn-Sham

P=P [ n]=P [{n k}] Berry-phase polarization

H=TV per−e ⋅rF [{n k}]=〈H 〉 ,

〈−e ⋅r 〉=− ⋅d P= d

=−e 〈r 〉


: dipole per unit volume

Berry-phase formula        how to evaluate         within PBCs!⇒

{n k}
{n k}

〈r 〉
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Justification

Seek long-lived
metastable

periodic solution

● Want periodic charge density:

● Want periodic one-particle density matrix:

● Use Bloch representation of density matrix:

r =rR

nr , r ' =nrR , r 'R

nr , r ' =〈 r∣n∣r ' 〉=∑n k
n k r n k r ' 

*

even though           are not eigenstates!{n k}



Derivation of Berry-phase P: Wannier functions

∣wn R 〉=


23
∫BZ

d k ei k⋅R∣n k 〉

Wannier functions         : 
● Labeled by band n and unit cell R
● Localized in r, extended in k

Bloch functions        : 
● Labeled by band n and crystal 

momentum k
● Localized in k, extended in r

n k

Related by a unitary transformation
(Fourier transform):

wn R

For insulators only (M filled bands), can use a Wannier representation of 
the density matrix:

nr , r ' =∑n=1

M
∑k

wn Rr wn Rr ' 

*

Advantage: WFs are localized in r      evaluation of        becomes simple〈 r 〉⇒



P= d

=−e 〈r 〉


〈 r 〉=Tr c  n r 

Trace per unit cell
(r representation): Trc

O= 1
N ∫all space

〈 r∣ O∣r 〉d r (N = # cells)

〈 r 〉= 1
N ∫d r nr , r r

*

P=P [ n]=P [{wn R}]

〈 r 〉= 1
N ∑n∑R∫d r wn Rr r wn Rr 

〈 r '∣r∣r 〉=rr '−r 

⇒〈 r∣n r∣r 〉=nr , r r

r=r '−R

〈 r 〉= 1
N ∑n∑R∫d r ' wn Rr '−Rr wn Rr '−R*

〈 r∣n r∣r 〉=〈 r∣n∫d r '∣r ' 〉 〈 r '∣r∣r 〉

≡1



〈 r 〉= 1
N ∑n∑R∫d r ' wn Rr '−Rr wn Rr '−R

wn Rr '−R=wn 0r ' 

〈 r 〉=∑n
〈wn 0∣r∣r wn 0 〉=∑n

rn0

P el=
−e 〈 r 〉


=−e
 ∑n

rn0

Center of charge
of Wannier fct.

● Point ions
● Diffuse 

● Point ions  
● Point        located 
at Wannier centers

e s
- e s

-

P total=P elP ion

*



Derivation of Berry-phase P: Bloch functions

In practice want to compute P from Bloch functions, not WFs

1-dim, 1 band: x0=〈w0∣x∣w0 〉P=
−e x0

a

∣w0 〉=
a

2∫0

2/a
d k ei kx∣uk 〉 ∣k 〉=eikx∣uk 〉

x∣w0 〉=
a

2∫dk −i∂k eikx∣uk 〉=
a

2∫dk eikx i∣∂k uk 〉

Integration by parts

x0=...=
a

2∫0

2/a
dk 〈uk∣i∂k∣uk 〉 x i∂kHeuristically:



k
k

2π/a 2π/a0

0

Periodic gauge:∣2/a 〉=∣0 〉

x0=
a
2 =−ℑ∫0

2/a
dk 〈uk∣∂k uk 〉 Berry phase 

BZ is a closed ring

Berry phase     is a global phase property 
of the Bloch band as k is carried around BZ



⇒

Practical calculations on a discrete k-mesh:

≃−ℑ ln∏ j=0

M−1
〈uk j
∣uk j1

〉



Overall phase factor of each Bloch state is arbitrary and not smooth
as a function of k:

∣uk j
〉 eik j∣uk j

〉

〈uk0
∣uk1

〉 〈uk1
∣uk2

〉 ... 〈uk j−1
∣eik j uk j

〉 〈e−ik j uk j
∣uk j1

〉 ... 〈uk J−1
∣uk J

〉

〈uk j
∣e−ik j 〈uk j

∣

Each state appears twice: once as a bra and once as a ket:

“Gauge phase”

⇒ Gauge phases drop out! (Clever discretization)

Important: set ∣k J
〉=∣k0

〉⇔∣uk J
〉=e−i G⋅r∣uk0

〉 “periodic gauge”



F=E KS−a P

1
N ∑n k

〈n k∣TV per∣n k 〉−
ea
2

ℑ ln∏ j=0

M−1
〈uk j
∣uk j1

〉

Electric fields: Implementation

=

E

E

Minimize the electric enthalpy functional

The         term introduces coupling between k-pointsE⋅P

/a0/aπ π-



Example: update each        by steepest-descent:∣uk 〉

● Find the gradient vector

● Trial updated state:

● Minimize F(θ) 

● Proceed to next band or k-point

∣Gk 〉=
F
〈uk∣

∣uk
new  〉=cos∣uk 〉sin∣Gk 〉 θ

Can use standard methods to find the minimum 

● Conjugate-gradients [Souza, Íñiguez and Vanderbilt '02]
● Car-Parrinello           [Umari and Pasquarello '02]

∣Gk 〉

∣uk
new  〉

∣uk 〉



E KS  [A∝E gap /N ]

a P  [ avg. slope       ]∝

F 

● F(θ) has local minima only!
● They disappear when 

    onset of Zener tunneling!

ea E gap /N

⇒

E E

E

F 



Lt

Lc=1/ k

a

N=8
Lc=8 a

Solution: Keep Lc=
N

2/a
Lt=

E g

e

E

E

● For given E-field, there is a limit on k-point sampling (and vice-versa)
● Length scale
● Meaning:    = supercell dimension

Lc=1/ k
Lc



Forces and stress

F i=−
d F
d r i

=−∂ F
∂ r i

−∑k , n

∣uk n 〉
∂ r i

F
〈uk n∣

At solution F
〈uk n∣

=0 ⇒ F i=−
∂F
∂ r i

(Implicit dependence via wavefunctions can be dropped: Hellmann-Feynmann)

F i=−
∂F
∂ r i

=−
∂ [E KS− ⋅P elP ion]

∂ r i
=−

∂E KS

∂ r i
e Z i

ionE
E

∂ P el

∂ r i
=0  (Berry phase only depends 

explicitly on wavefunctions)

Standard    =0
expression

already coded

(Similar arguments for stress)

E


