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Macroscopic magnetization 
• A crystal can be found in different magnetization states. 
• The direction of macroscopic magnetization changes inside the crystal
• This can be observed by the magnetic Kerr effect (rotation of polarized light)

• Under the action of an external field, the magnetization        changes its 
direction, not its amplitude.

• Under a very intense magnetic field

• When the magnetic field is turned off, the magnetization distribution is 
reestablished. 

• The domain distribution has an energetic origin (and is not related to defects for 
instance)
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Macroscopic Magnetism
• Magnetic energy

• Landau-Ginzburg like  functional

• The observed magnetization minimizes this functional.
• The first two terms are of microscopic origin
• The third term depends upon  the shape of the sample. 
• The fourth one describes the interaction with the external field.
• NB: If time is reversed,                                   but the energy Is constant
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Macroscopic Magnetism
• Different terms in the magnetic energy

• Magnetic anisotropy energy depends upon orientation
• Can exist only if there is a coupling between the lattice and 

magnetization, through the spin-orbit coupling.
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Macroscopic Magnetism
Anisotropy energy respects the symmetries of the crystal

– Cubic (K1>0, [100], K1<0 [111] etc..)

– Hexagonal
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Objectives of a magnetic calculation

1. Microscopic determination of the saturation magnetization
• It might be non uniform inside the crystal cell (non-collinear 

magnetism)

2. Microscopic determination of the magneto crystalline anisotropy
– Its most important contribution from the spin-orbit coupling

• Other an isotropic interactions: spin-spin, spin-other orbits neglected

3. Exchange terms
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Some Classes of Magnetic Systems 

• Paramagnetism is favored by the presence of bands, which are 
doubly occupied. But some systems exhibit spontaneous 
magnetization.

• Collinear ferromagnets :3d Metals : Fe, Co, Ni. Mostly due to 
spin (orbital moment ~0) Stoner criterion: xc X D(Ef)  large

• Antiferromagnet (anti parallel orientation): Cr, Mn (some 
phases), ordered alloys: Fe3Mn …, insulating compounds MnO, 
NiS …: different sublattices with opposite orientations.

• In case the moments do not compensate: ferrimagnetism yields 
a net magnetic moment. Magnetite: Fe3O4,NiFe2O4 Complicated 
structures: exchange mediated by oxygen

• Helimagnetism: some 4f Rare earth (RKKY interaction), MnAu2

• More complex non collinear structure: Mn, fcc Fe etc….
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Example: Ferromagnetism of 3d metals
• Iron,Nickel and Cobalt: ferromagnets

– These are 3d elements, for which the atomic 3d WF strongly overlap and form a 
band of a given width W

– A qualitative understanding of the existence of magnetism is given by the Stoner 
criterion.

• Assume a constant DOS (D), and decompose the energy as band+exchange contributions
• Correlation effects has a structure: 
• If            , then one spin channel will be filled at the expense of the other.
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Spin DFT
• In principle, the DFT is an exact theory and so there is no need for a particular 

consideration for spin.
• But, the usual approximations generalize easily if we consider spin explicitly
• One complements the external potential V, with a magnetic field B along z (next for B )
• The system will polarize, and one gets a up and a down electron density: 
• The energy of the system will be a functional of the density and the magnetization 

(supposed along z).
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The Kohn-Sham equations

• If we minimize the energy, we obtain two equations, one for 
each spin channel (we set Bext=0)
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The LSDA

• The total energy is also given by the sum over states:

• The exchange correlation energy of the electron gas can be 
written as:

,

1 ( ) ( ) ( ) ( ) ,
2 h xc xc

i

E d n V d n V E n nσ
ι σ σ

σ σ

ε , ↑ ↓= − − + ⎡ ⎤⎣ ⎦∑ ∑∫ ∫r r r r r r

1/ 3
4 / 3 4 / 3

, ( ) ( , )

( , ) ( , ) ( , )

3 1( , ) 3 ( )
4

( , )   by QMC

, ( ) ( , , , )

Perdew, Burke, Ernzerof PRL,77,3865(199

LDA
xc xc

xc x c

x

c

GGA
xc xc

E n n n n n d

n n n n n n

n n n n
n

n n

E n n n n n n n d

ε

ε ε ε

ε
π

ε

ε

↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓

↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

≈⎡ ⎤⎣ ⎦
= +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

≈ ∇ ∇⎡ ⎤⎣ ⎦

∫

∫

r r

r r

6): PBE



August 20051st Principles School, UCSB, 08/22-09/02 12

Stoner revisited

• Each spin channel yields a different potential due to the xc term
• To study the stability of the paramagnetic phase, one can 

expand this potential for a small magnetization term
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Stoner revisited

• More rigorously (Janak,1977): compute the spin susceptibility 
and the criterion is satisfied when it is negative.

•
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Example of a Pseudopotential calculations (norm conserving)

• BCC Fe ~rigid shift of DOS
• Magnetization strongly dependent 

of cell parameter

Energy as a function of cell (a.u.) 

Magnetization as a function of cell (a.u.) 



August 20051st Principles School, UCSB, 08/22-09/02 15

Calculations using a Pseudo potential

• Iron has been much studied
– LSDA will predict a correct magnetic moment (2.17 vs 2.22 exp)
– BUT, the NM fcc structure has a lower energy than the FM bcc
– This is corrected but using the (PBE) GGA

• Pseudo potentials are generally constructed on non magnetic 
configurations and used for magnetic systems …

• Also, the use of non local core corrections is essential (exercice: 
compare magnetization for bcc Fe, using 26fe.pspnc and 
26fe.hgh)

• But, best results are obtained with PAW (cf talks by Jollet
Torrent): this is an all electron theory with a psp look (and 
includes nlcc)
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Results of calculations

• 3d ferromagnetic elements (Fe, Co, Ni): very good prediction of 
the magnetization with GGA

• 3d non ferromagnetic elements (Mn, Cr): complicated spin 
arrangement (e.g. spiral)  non compatible with the hypothese of 
// spins

• Intermetallic compounds (that is compounds of Cu ,Ni, Co, Fe, 
Mn, Cr), yields good values of magnetization

• Magnetic Oxydes: classical examples of failure of the LSDA (or 
GGA)

• This failure is presumably due to a neglect of the on site 
correlation (U term) of localized orbital.

• LDA includes this only on average (cf the example of Ce)
• This failure is the source of many improvements of LDA, GGA: 

LDA+U, SIC, Hybrids functionals (HF+LDA), etc…
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Non collinear Magnetism

• Up to now, we considered moments all parallel along 
a given axis 

• But there are cases where it is not justified:
– In some systems, the ground state is non collinear: in Mn, in 

solid oxygen,  in Mn4N, in fcc Fe etc…
– Spin excitations (“spin waves”) must take into account non 

parallel configurations
– The exchange coupling parameter of the Heisenberg

Hamiltonian requires a non collinear arrangement

• This requires a generalization of spin DFT to account 
for a vector m(r)
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Spin ½ reminder 
• Spin state

• Magnetic moment along x
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The WF as a two component spinor
• In each point in space, the wave function posses two spin components, 

and the KS principle is generalized towards a duality between (density, 
magnetization) and external fields (potential, magnetic field)

• The electronic density can be written:
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Direction of magnetization in space

• The magnetization along x, for instance:
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Another view: the spin density matrix

• Magnetization

• Spin density matrix
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Magnetization and spin density matrix

• We can equivalently use each object:

• Note the *

( ) ( )     ( r )= ( )m r r rαβ αα
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αβ αβ
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Energy functional (GLSDA)
• Energy is now a functional of energy and magnetization vector m

• One can equivalently use the spin density matrix. 
• The variational principle applied to it leads to the new Hamiltonian
• As usual, one needs to construct the exchange correlation
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The « local spin density approximation »(LSDA)
• One extends the usual (LDA) exchange correlation term to include

the presence of vector magnetization

• If one uses the electron gas as a reference, the magnetization 
direction is immaterial (note, this is easy to express with the help 
of the magnetization vector)

• We can use the same formula for the LDA as the usual collinear 
magnetic case, since it only depends on |m|

• In principle, the GGA should include the rotationally invariant parts 
of ∇m, but is not yet done…

( ) ( ( ),| ( ) |) ( ) ( ( ))xc xc xcE r r r dr r r drαβρ ε ρ ρ ε ρ= =∫ ∫m
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Kohn-Sham Hamiltonian
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Kohn-Sham Hamiltonian  (contd)
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Energy functional
Expression with the help of eigenvalues
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Spin-orbit: The  Dirac Hamiltonian
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Spin-orbit coupling
• Spherical potential

• Order of magnitude for a valence orbital

• ->Much better for the valence pseudo orbital 
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Spin orbit projector

• The L.S operator
– The angular momentum  operator has invariant spaces indexed by 

l and of dimension (2l+1). A projector on this space is denoted 

– The same is true for spin (with l=1/2)

– A projector on spin and angular momentum space is 

l l><

s s><

ls ls><
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The L.S operator

• On this space the L+S=J operator has two invariant subspaces

– Angular momentum l+1/2 and l-1/2 of dimensions 2l+2 and 2l

– Now, 

– So we derive the meaning of 

– Project on the ls space, and apply the spin-orbit coupling

2 2 2 2( ) 2 .J L S L S L S= + = + +

ls ls><L.S



August 20051st Principles School, UCSB, 08/22-09/02 32

How to build Pseudo potentials
• For a potential with a spherical symmetry, the solutions of Dirac’s equation 

have the form:

• One can built a pseudo potential for which the wave functions have the 
same shape beyond a certain radius, by only adding a spin orbit term to it
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How to use a plane wave basis
• Each component is developped on a basis
• For instance, in plane waves, the basis is

• The components of the wave function are:

• That is two times more coefficients, and matrices 4 times bigger
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Expression in the plane wave basis
• The important term is

• See Gonze at al. Comp. Mat. Sci., 25 (2002)
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Effect of spin-orbit coupling  upon total energy
• Heavy metals

– « norm conserving » pseudo potentials 
– Experimental equilibrium phases
– N. Richard et S. Bernard(PRB,66,2002)

GGA GGA+SO EXP GGA GGA+SO EXP

U 145GPa 132Gpa 135Gpa 19.91

18,20

20.33 20.56

Np 180Gpa 165Gpa 120Gpa 19.83 19.23
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Conclusions

• Magnetic moments generally well reproduced by GLSDA
• But magnetic oxides exhibit localized states which are not well 

described by LDA (Mott insulators e.g. due to correlations are 
described as metals)

• Anisotropy is well described for “hard” magnets, less well for 
soft magnets 

• Temperature effects on K are nearly untouched
• Spin-orbit coupling has a smaller effect on total energy in a psp

context than in all electrons calculations
• But changes the DOS substantially for heavy metals 
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