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Macroscopic magnetization

* A crystal can be found in different magnetization states.
 The direction of macroscopic magnetization changes inside the crystal
e This can be observed by the magnetic Kerr effect (rotation of polarized light)

« Under the action of an external field, the magnetization M (r) changes its
direction, not its amplitude. |M (r)| =M,

* Under a very intense magnetic field np= M B
B

 When the magnetic field is turned off, the magnetization distribution is
reestablished.

 The domain distribution has an energetic origin (and is not related to defects for
instance)
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Macroscopic Magnetism

« Magnetic energy

€S

« Landau-Ginzburg like functional

E[M(r)]=E,,[M(r)]+ E.., [VM (r)]
T Ems [M (l')]— M (l‘)B ext(r)

 The observed magnetization minimizes this functional.

e The first two terms are of microscopic origin

 The third term depends upon the shape of the sample.

« The fourth one describes the interaction with the external field.

 NB: If time is reversed,M (n—>-M (n.B (n—-B(r) but the energy Is constant
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Macroscopic Magnetism
« Different terms in the magnetic energy

 Magnetic anisotropy energy depends upon orientation

 Can exist only if there is a coupling between the lattice and
magnetization, through the spin-orbit coupling.

AE ., [M (r)]=1u eV [atom
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Macroscopic Magnetism

Anisotropy energy respects the symmetries of the crystal

g2 — Cubic (K,>0, [100], K,<0 [111] etc..)
E,, = K,(m*,m? +m’m? +m’>m? )+ K,m’ m? m’>+.. m=M/|M |
— Hexagonal
E, = K (M, +m?,)+ K,(m?, + mzy)+%((mx +im )*+(m, —im )?) =M /|M |
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Objectives of a magnetic calculation

1. Microscopic determination of the saturation magnetization

Ce:) * It might be non uniform inside the crystal cell (non-collinear
magnetism)

2. Microscopic determination of the magneto crystalline anisotropy

— Its most important contribution from the spin-orbit coupling
e Other an isotropic interactions: spin-spin, spin-other orbits neglected

3. Exchange terms

1st Principles School, UCSB, 08/22-09/02 August 2005 6



Some Classes of Magnetic Systems

Paramagnetism is favored by the presence of bands, which are
doubly occupied. But some systems exhibit spontaneous
magnetization.

Collinear ferromagnets :3d Metals : Fe, Co, Ni. Mostly due to
spin (orbital moment ~0) Stoner criterion: xc X D(Ef) large

Antiferromagnet (anti parallel orientation): Cr, Mn (some
phases), ordered alloys: Fe;Mn ..., insulating compounds MnO,
NiS ...: different sublattices with opposite orientations.

In case the moments do not compensate: ferrimagnetism yields
a net magnetic moment. Magnetite: Fe;O,,NiFe,O, Complicated
structures: exchange mediated by oxygen

Helimagnetism: some 4f Rare earth (RKKY interaction), MnAu,

More complex non collinear structure: Mn, fcc Fe etc....
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Example: Ferromagnetism of 3d metals

* Iron,Nickel and Cobalt: ferromagnets

Ce:) — These are 3d elements, for which the atomic 3d WF strongly overlap and form a
band of a given width W

— A gualitative understanding of the existence of magnetism is given by the Stoner
criterion.

* Assume a constant DOS (D), and decompose the energy as band+exchange contributions
« Correlation effects has a structure: Un;n,

If DU >1, then one spin channel will be filled at the expense of the other.

81\ SL
E=E;+E, = ng(e)dg+ng(5)dg+UnTn¢
0 0

1 n’ 1 n’ n“(1-<7)
=—(n"+n")+Unn =—+(——+U)n\n, =—+(——
2D(T S+unn, op T EptYmn 2D(D A
D(¢) =D =Cste
D&, =n,
n,+n, =n
n, —n,

g: n
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Spin DFT

* In principle, the DFT is an exact theory and so there is no need for a particular
consideration for spin.

* But, the usual approximations generalize easily if we consider spin explicitly
 One complements the external potential V, with a magnetic field B along z (next for B )
«  The system will polarize, and one gets a up and a down electron density: M4 (r),n ! (r)

 The energy of the system will be a functional of the density and the magnetization
(supposed along z).

E=K|n, |+K[n, |[+E,[n]+E,[n;n, ]
+[drn(r)V,, (r) [ drm(r) B, (r)

n(r)=n.(r)+n,(r)
m(r) =n.(r)—n, (r), in units of z,
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The Kohn-Sham equations

If we minimize the energy, we obtain two equations, one for

each spin channel (we set B,,,=0)
A o i i i
{——+V o (r)}\P(T:gU\PG o=T{
2

n7(r) =Y F (&) ¥, ()
V7 (1) =IVext (r) +V, (r)+V 7, (r)
O, (ny.n: )

on_
n(r)=n*(r)+n'(r)

m(r) =n'(r)—n*(r)

Ve . (r)=
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The LSDA

 The total energy is also given by the sum over states:

eSS .
—  E=Ys, -2 [drn(r)V, (1) =" [drn, (rVZ(r)+E, [0, ]

 The exchange correlation energy of the electron gas can be

written as:
EN [ nan, |= jn(r)gxc(nT, n,)dr

&c.(N,n ) =¢.(ng,n ) +e.(ny,ny)
3 1/31
N, N :_3 e - n4/3+n4/3
gx(']‘ ¢) (47Z'j n(T i)
gc(nT1n¢) by QMC

Ectn,n, |= Jn(r)gxc(nT,ni,VnT,Vni)dr
Perdew, Burke, Ernzerof PRL,77,3865(1996): PBE
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Stoner revisited

» Each spin channel yields a different potential due to the xc term

SSO I To study the stabllity of the paramagnetic phase, one can
— expand this potential for a small magnetization term

V. (r)=V° _(r)xm(r)V*' (r)
V. (r)=V° (r) J_r% IM  If second term ~constant: rigid shift

M =gjf [D0(5+%II\/I)— Do(g—%lM)}dg

Non zero solution at small M = ID°(g, ) > 1
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Stoner revisited

* More rigorously (Janak,1977). compute the spin susceptibility
and the criterion Is satisfied when it is negative.

X
A7 7]
| = j dry? (r)|K (r)
D°(z,)7(r) == p(r)

{6°E, [ p,m]/ Sm(r)om(r)} = 2K (r)5(r 1)
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Example of a Pseudopotential calculations (norm conserving)

« BCC Fe ~rigid shift of DOS

SSO I Magnetization strongly dependent
— of cell parameter

205

Density of states spin-up and spin-down electrons

1 L 1 i 1 L 1 i |

Bee Fe 35 sm 5,34 5.36 5,38 54
40 T I
— DOS spin-up 4 Magnetization as a function of cell (a.u.)
— DOS spin-down
20k —— Integrated DOS spin-up | 24986
— Interated DOS spin-dow
g T - 24986 f
g e L
S0 .
g / 24987 -
i L
g 24987 -
= [
220 .
24987 -
Fermi level
24987 . | L ‘ \ ‘ \ L
40— | 53 532 534 536 538 54
| I | I |
-0,5 0 0.5

Encgry (Hartree) Energy as a function of cell (a.u.)
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Calculations using a Pseudo potential

Iron has been much studied

— LSDA will predict a correct magnetic moment (2.17 vs 2.22 exp)
— BUT, the NM fcc structure has a lower energy than the FM bcc
— This is corrected but using the (PBE) GGA

 Pseudo potentials are generally constructed on non magnetic
configurations and used for magnetic systems ...

» Also, the use of non local core corrections is essential (exercice:
compare magnetization for bcc Fe, using 26fe.pspnc and
26fe.hgh)

e But, best results are obtained with PAW (cf talks by Jollet
Torrent): this is an all electron theory with a psp look (and
includes nlcc)

1st Principles School, UCSB, 08/22-09/02 August 2005 15



Results of calculations

3d ferromagnetic elements (Fe, Co, Ni): very good prediction of
the magnetization with GGA

3d non ferromagnetic elements (Mn, Cr): complicated spin
arrangement (e.g. spiral) non compatible with the hypothese of
I/ spins

Intermetallic compounds (that is compounds of Cu ,Ni, Co, Fe,
Mn, Cr), yields good values of magnetization

Magnetic Oxydes: classical examples of failure of the LSDA (or
GGA)

This failure is presumably due to a neglect of the on site
correlation (U term) of localized orbital.

LDA includes this only on average (cf the example of Ce)

This failure is the source of many improvements of LDA, GGA:
LDA+U, SIC, Hybrids functionals (HF+LDA), etc...
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Non collinear Magnetism

« Up to now, we considered moments all parallel along
a given axis
e But there are cases where it is not justified:

— In some systems, the ground state is non collinear: in Mn, in
solid oxygen, in Mn,N, in fcc Fe etc...

— Spin excitations (“spin waves”) must take into account non
parallel configurations

— The exchange coupling parameter of the Heisenberg
Hamiltonian requires a non collinear arrangement

e This requires a generalization of spin DFT to account
for a vector m(r)
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Spin ¥2 reminder

e Spin state

5)=als)+1) =}

« Magnetic moment along x

S, =t ,(s|o]s) "x:((l) ;J'“v:[? ;ij"’zz(cl) —Olj
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The WF as a two component spinor

* |n each point in space, the wave function posses two spin components,
Cea and the KS principle is generalized towards a duality between (density,

_WT(r)_
_W¢(r)_

« The electronic density can be written:

v (r) =

o0 =[v.r) w1

magnetization) and external fields (potential,

_l//¢(r)_

magnetic field)

=y, (O + (0]
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Direction of magnetization in space

The magnetization along X, for instance:

€S

M, (r) = [y, (r) m(r)]*sx{"”(r)}

l//¢(r)

= Hg [WT(r) W¢(r):|*O'X|:

«0 1
= u, [WT(r) lﬂi(l’):l {1 }{V/T(I’)

= ws (W (D) w () +y,(Ny (1))
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Another view: the spin density matrix

e Magnetization

M (1) = [ (1) m(r)]*s*{‘“”)}

W¢(r)

e Spin density matrix

P =y (Nw,(r) > p(r) =3 fw ™, (Ny",(r)

k]
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Magnetization and spin density matrix

 We can equivalently use each object:

m(r)=>Y p“(r)oa p)=> p(r)
af ap

2p“ (1) = p(1)8,,+M(1).0 "

e Note the *

1st Principles School, UCSB, 08/22-09/02 August 2005

22



Energy functional (GLSDA)

 Energy is now a functional of energy and magnetization vector m

€S

T E[pTN]=Tp7(N]+ B [pM]+ B[ 27 (N]+ [Vou(Np(r)dr
T[p(0)] == 2 [ Wi AV () + vl (AW (D)

E,o| o7 (r)|=E,.[p(r), m(r)]

 One can equivalently use the spin density matrix.
« The variational principle applied to it leads to the new Hamiltonian
 As usual, one needs to construct the exchange correlation
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The « local spin density approximation »(LSDA)

* One extends the usual (LDA) exchange correlation term to include
Cea the presence of vector magnetization

E,. = [ P(De,(p(r).[m(r) Ddr = [ p(r)e, (o™ (r)dr

* |If one uses the electron gas as a reference, the magnetization
direction is immaterial (note, this is easy to express with the help
of the magnetization vector)

e We can use the same formula for the LDA as the usual collinear
magnetic case, since it only depends on |m|

e In principle, the GGA should include the rotationally invariant parts
of Vm, but is not yet done...
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Kohn-Sham Hamiltonian

1

Haﬂ:_§A5aﬂ VY = oE

op (1)
V aﬂeff :VH (p(r))gaﬂ +Vx0éﬂ (paﬂ (r)) +Vext (r)
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Kohn-Sham Hamiltonian (contd)

G vz (o (ry - Sl (D)
Sp” ()

Vie (p”(N) =V, (p ’ (r))§aﬂ N ﬂBB(paﬁ (r)).c”

(o (1) =~ BT () p(r) 2o 2 )
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Energy functional

Expression with the help of eigenvalues

E[ 27 (1] =2 f(&4)6g = [V (1) p(0)dr + [ By (r)m(r)dr

+[Vou (1) p(r)dr + Ey, [ ()] + E, [ p(x), m(r)]
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Spin-orbit: The Dirac Hamiltonian

« Dirac’s equation (¢ and y two components spinors)
E+2mc? -V |g+co.py =0
:E —V]W-I—CJ. Py =0

 Low E: scalar relativistic approximation + spin-orbit coupling
¢ ~(v/ic)y ordre (1/c)? = (1/137)?
2

pz F +V (r)¢
4
1
—8pC2 F -7 VV ().

+ 412 oc.(VV(r)x pg) =¢c¢
C

1st Principles School, UCSB, 08/22-09/02 August 2005 28




Spin-orbit coupling

e Spherical potential

VV(r):LdV r

r dr
12 6.(VV (r)xp) = 1dv 6.(r xp)= ldl(r.l
C r dr r dr

« Order of magnitude for a valence orbital

a~1l/2Z,V =~ 2°
<y |r*dV /ldr |y >~ (Z /c)?

2
e ->Much better for the valence pseudo orbital = (Zy /)
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Spin orbit projector

« The L.S operator

— The angular momentum operator has invariant spaces indexed by
| and of dimension (2I+1). A projector on this space is denoted

1 ><1]

— The same is true for spin (with 1=1/2)

s >< 9]

— A projector on spin and angular momentum space is

Is ><1s|
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The L.S operator

On this space the L+S=J operator has two invariant subspaces
— Angular momentum |+1/2 and |-1/2 of dimensions 2[+2 and 2|
— Now, J2=(L+S)*=L*+S?+2L.S

— So we derive the meaning of

L.Sls >< Is]

— Project on the Is space, and apply the spin-orbit coupling
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How to build Pseudo potentials

 For a potential with a spherical symmetry, the solutions of Dirac’s equation
have the form:

€S

¢I+1/2(r)

* One can built a pseudo potential for which the wave functions have the
same shape beyond a certain radius, by only adding a spin orbit term to it

Vy = Z(;Vf**(r, r)|Is){ls|+ ;v,so(r, r')L.S| Is><ls|j

1/2
(I +m+1j vy
21 +1

[

| —
21 +1

1/2
m ) Y|m+1

. 1/,(1)

VFO (r,r) = Zaij B(r)P;(r’)
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How to use a plane wave basis

Each component is developped on a basis
For instance, in plane waves, the basis is

[ 2izG.r |
d 0
© et Gi=

G T= 0 Q2i7G.T

The components of the wave function are:

w (r)=e"' [WT(r)} _ aikr { G aGTeiG-f}

W¢(r) . aC;ieiG.r
That is two times more coefficients, and matrices 4 times bigger
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Expression in the plane wave basis

e The important termis (Gvi.|G")

(612 (00, (/6 =472+ () (61 RES)

(Gs|Q (NQ,(rLS|Is)(Is|G's,) =-i4r(2 +D 1. (|G)) f.|G]) P, (GG) <5,[S]s, > GxC'
f(G) :47zL+OOQ, (Nexp(iGr)rdr

« See Gonze at al. Comp. Mat. Sci., 25 (2002)
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Effect of spin-orbit coupling upon total energy

Heavy metals

g2 — « norm conserving » pseudo potentials
— — Experimental equilibrium phases
— N. Richard et S. Bernard(PRB,66,2002)
GGA GGA+SO | EXP GGA GGA+SO | EXP
U 145GPa |132Gpa |[135Gpa |19.91 20.33 20.56
Np 180Gpa |[165Gpa |120Gpa |18,20 19.83 19.23
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Conclusions

 Magnetic moments generally well reproduced by GLSDA

* But magnetic oxides exhibit localized states which are not well
described by LDA (Mott insulators e.g. due to correlations are
described as metals)

* Anisotropy is well described for “hard” magnets, less well for
soft magnets

 Temperature effects on K are nearly untouched

« Spin-orbit coupling has a smaller effect on total energy in a psp
context than in all electrons calculations

e But changes the DOS substantially for heavy metals
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