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Lattice Stability of Solids Under intense 
irradiation
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Femtosecond light sources

• Lasers 
– Operate in the visible (up to  400 nm), with a  very short pulse (150 

fs ) 
– Pump laser 65 microns (FWHM) with a maximum irradiance of 

about 1013 W/cm2 
– Can heat a gold sample with thicknesses ranging from 280–320 A 

up to 6-8 eV (1ev=11000K)
– Can also be utilized as probe in pump/probe experiments 

(measure e.g. reflectivity) with large beam diameter

• X-rays pulse
– As part of the effort to build free electrons lasers in the X-ray range 

(Stanford and Hamburg) in 2010
– Intense bursts of X-rays in the 150fs range
– Can be used as probe for real-time diffraction experiments 
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Schematic of the experimental setup (pump-probe)
• Free-standing gold foils with 

thicknesses ranging from 280–
320 A 

• Heated by a 400 nm, 150 fs
(FWHM) pump laser 65 microns 
(FWHM) with a maximum 
irradiance of about 1013 W/cm2 

• Reflectivity R, transmission T of 
the pump laser are monitored 

• Optical property of the heated 
foil: collimated 800 nm, 150 fs
probe laser with a beam 
diameter of 650 microns  at 45 
degrees

• K.Widmann, et al., PRL, 
125002, 2004
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Experimental set-up (X-rays) A.M. Lindenberg et al., Science, 2005

Si
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Diffraction observation: decay of the (111) and (220) peaks starting 
immediately
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Ab initio calculations

• The laser couples directly only to the electrons (optical 
frequency)

• The electron thermalization time is 10-100 fs
– We suppose the electrons are at a given temperature

• The electron-phonon coupling term yields thermalization times 
in the 10 ps range
– Just after irradiation, there is a small transfer of energy to the ions

• One can suppose that the ions couple through an electron gas 
at finite temperature

• Depending on the laser and the target the temperatures are 
estimated to be ~2eV (22 000K ) for the insulators, and 6eV (66 
000 K) for metals

• Therefore, use a simulation using a Fermi-Dirac smearing of the 
electrons .
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Molecular dynamics for silicon (Silvestrelli et al., PRL, 1996)
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Pair correlation function
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Phonon spectrum of silicon (with Abinit)
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Analysis of the phonon spectrum

• The first “ab initio” calculation of the phonon spectrum of Si was 
done by R. Martin (1968)

• Use a (local) electron-ion pseudo potential, linearly screened by 
the dielectric function.

• And more simplifications:
– Incomplete screening of ionic charge leads to the introduction of a 

“bond charge” always at the midpoint of two atoms
– The dielectric function is very simplified (diagonal)

• Results:
– If a metallic type complete screening is allowed, the TA modes are 

unstable
– Taking a bond charge of 1/6 leads to a fair agreement with 

experimental data
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The phonon spectrum of R. Martin
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Looking at old references again

• Biswas and Ambegaokar (1982) reconsidered the model, by 
modifying the dielectric function to include excited electrons and 
a subsequent increase of screening.
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Experimental results for Gold
• Measurement of the optical 

conductivity 
• Observation of a very long 

steady state where ion motion 
seems  negligible

• Ab initio calculation of the 
optical conductivity (using 
Kubo-Greenwood formula, as in 
the module conducti) and 
assuming a liquid state  yields 
results which are far away from 
experiments (S. Mazevet et al.) 

• Seems to be different from 
silicon
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Phonon spectrum of gold
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Lindemann’s criterion of melting 
• Melting will occur if the mean square displacement is larger than 

some fraction of the lattice spacing (e.g. 0.2)

• The simple Debye model represents the phonon DOS by a 
single parameter, the Debye temperature.

• This parameter can be extracted from the heat capacity whose 
high  temperature part is given by the Debye form:  C(T)=3Mk 
D(T/thetaD)

• From              one can extract the mean square displacement, 
which is proportional to 

• Hypothese: 
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Variation of the Debye temperature of gold
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Comparison between gold and aluminum

• The phonon spectrum of Aluminum will be only slightly modified 
even up to 6eV

• The melting temperature, computed with the same technique 
will only increase of 10%

• The general form of interatomic potential for Al and Au are 
different.

• For Al, (complete) linear screening of a pseudo potential yields
good values for the spectrum

• The electrons are quasi free, and dense: only slightly affected 
by temperature

• For Au, a noble metal, d electrons are localized and can get 
excited. Thight binding potential: 
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DOS of high temperature Aluminum and gold

• For aluminum, even at 6 eV, the density of states is not 
changed (this is a “degenerate” electron gas)

• For gold, the 3d states are somewhat localized and can get 
excited.
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Conclusion

• Intense ultra fast laser irradiation changes the nature of 
chemical bonding of solids (and is used in many technological 
applications)

• As a general rule, semi-conductors and metals respond in a 
different way to these excitations.

• In many semi-conductors, a slight metallic character rapidly 
leads to a destabilization of the lattice

• In metals, a subdivision occurs whether localized electrons 
participate in the bonds.

• In e.g. Al,  free electrons are not affected
• In Au, excitation of d electrons, increase the ion charge a 

decrease the band width leading to a strongly repulsive 
potential.

• A more systematic study is in order….
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