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1. Energy derivatives and
physical properties:

X.  Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)
R. W. Nunes and X. Gonze, Phys. Rev. B 63 , 155107 (2001)



Energy functionals:
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The energy functional minimized in terms of 
the electronic degrees of freedom within ABINIT is

• In zero field:

The Born-Oppenheimer energy :
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Energy functionals:

• In non-zero field:
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or the electric enthalpy
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* R. W. Nunes and X.  Gonze , Phys. Rev. B 63, 155107 (2001)
I. Souza, J. Iniguez and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002)



Energy expansion:

     

F
e+ i

[Rκ ,E ] = F
e+ i

[Rκ
0,0]

+
∂F

e+ i

∂Eα

Eα
α
∑ +

∂F
e+ i

∂τκα
τκα

κ
∑

α
∑

+
1

2

∂F
e+ i

∂Eα∂Eβ

EαEβ
αβ
∑ +

∂F
e+ i

∂τκα∂Eβ

τκα
κ
∑

αβ
∑ Eβ

+
1

2

∂F
e+ i

∂τκα∂τκ 'β

τκα
κκ '
∑

αβ
∑ τκ 'β + ...

Various physical quantities are related to successive 
derivatives of Ee+i or Fe+i  in terms of E and τκ=Rκ-Rκ

0 

Note  : can be generalized to include strains → Fe+i[Rκ, E, η]



Physical quantities:
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Physical quantities:
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• Atomic forces :

• Electric displacement field :



2. Computation of energy
derivatives within DFPT:

X. Gonze, Phys. Rev. B 55 , 10337 (1997)
X.  Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)



Energy derivatives:
Computed  through a two-steps  procedure

1. Determination of first-order wave-functions 
from the minimization of a variational expression:

under the constraint that 

-

-



Energy derivatives:

2. Evaluation of the appropriate energy derivative using :

a. stationary expression 

-

-

Two 1st order 
wfs are needed



Energy derivatives:

2. Evaluation of the appropriate

b. non-stationary expression 

with

-

-

Only one 1st  order wf is needed



3. Dynamical charges

X.  Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)
Ph. Ghosez, J.-P. Michenaud and X. Gonze , Phys. Rev. B 58, 6224 (1998)

Ph. Ghosez and X. Gonze, J. Phys. : Condens . Matter 12, 9179 (2000)



Born effective charges:

- Related to a mixed second derivative  of the

Born-Oppenheimer energy.

- Dynamical concept  distinct from conventional

static ionic charges.

- Monitor various properties of ionic crystals (such

as the LO-TO splitting).



Static ionic charges:

• Popular but ill-defined concept :
Dependent of the theoretical model arbitrarily  chosen
to affect a given electron to a particular atom.

• Numerous definitions :
- from wave-functions  :   Mulliken pop. analysis, natural atomic orbitals
- from integrated density  : sphere, Hirshfeld , Bader topological analysis

- from the electrostatic potential  : fitting by point charges (Lee)
- from empirical models: bond-orbital model, shell-model...

• No quantitative but qualitative   informations :  
- underlined by a unique  physical factor (similar trends)
- useful to identify changes  (from one phase to another)

- hybridizations reduce  the static charges



Dynamical ionic charges:
… whenever an ambiguity arises about the definition of a concept such as
the atomic charge, it can be removed by discussing only quantities that can
be experimentally determined at least in principles.          W. A. Harrison

• Molecule :  (atomic polar tensor )

change of dipole moment under atomic displacement

• Periodic solids  :

change of polarization under sublattice displacement
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Dynamical ionic charges:
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Born effective charge:
(alias transverse  charge)
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Can be computed from different techniques:

- linear response :

3 different formulations

- difference of polarization  under finite atomic displacement

- difference of force  under finite electric field
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Born effective charge:
stationary formulation

-



Born effective charge:
non-stationary formulations

-



Callen effective charge:
(alias longitudinal  charge)
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• Born  and Callen charges are related  through:

• With                            :   D = E  +4π P = 0



Szigeti effective charge:

   

Zκ ,αβ
* (s) = Ω

0

∂Pβ

∂τκ ,α Eloc =0

    

Zκ
* (s) = Zκ

* (T ) + Ω
0

(ε∞ −1)

4π
τ =0

∂E
∂τκ Eloc = 0

−
4π

3Ω0

Zκ
*(s )

  

  
Zκ

* (T ) =
(ε∞ + 2)

3
Zκ

* (s)

• With                            for an isotropic material :

• Born  and Szigeti  charges are related  through:
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Effective charge in an ellipsoid:
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• With                          with ni the depolarizing factors (Σni=1) :

• Born  and ellipsoid  charges are related  through:
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Z* in slabs,wires and spherical clusters:

• Spherical clusters:

nx = ny = nz = 1/3 →

• Slabs:

nx = ny = 0     nz = 1 →

• Wires:

nx = ny = 1/2  nz = 0 → …
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Computation Z*zz in slabs:
• Periodic boundary conditions  correspond to artificial

conditions on the electric field in the direction ⊥ to the
surface (i.e.  dependent of the vacuum thickness : E=0

over the whole  supercell).

• Computed Z* and ε∞ in the direction ⊥ to the surface (from
anaddb ) are dependent of the supercell !

• The meaningful quantity to be considered is the
longitudinal charge :
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Charge neutrality sum rule
The crystal is neutral.

• This imposes a constraint on the dynamical charges known
as the charge neutrality sum rule (ASR) :

• This relation is slightly broken within DFPT. The sum rule is
restored using for instance :

• Note  : another sum rule at surfaces and interfaces
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Typical results
Dynamical charges can be significantly larger than static formal

charges and take anomalous values

The case of perovskite ABO 3 compounds



Origin of anomalous charges
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either local polarizability  (a) or charge transfers  (b).



4. Phonon frequencies

X. Gonze, Phys. Rev. B 55 , 10337 (1997)
X.  Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)



Zone-center phonons
(TO modes : E = 0):

• Harmonic energy :

• Equation of motion

• Solution
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Dynamical equation
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Notations
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•Force constant matrix

•Dynamical matrix

•Phonon eigenvector

•Phonon eigendisplacements

•Phonon frequency



Zone-center phonons (q → 0)
(LO modes : D = 0):

• Force :

• Displacement field

Along q, D must be preserved : qα .Dα=0
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LO-TO correction at Γ
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Acoustic sum rule
The crystal energy must be invariant under

global translation of the whole crystal.

• This imposes a constraint on the force constant matrix
known as the acoustic sum rule  (ASR) :

• This relation is slightly broken due to the use of a real
space grid to evaluate the exchange-correlation energy.
The ASR is restored using :

• Note  : same “q=0 correction ” used at all q
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5. Dielectric tensor

X. Gonze, Phys. Rev. B 55 , 10337 (1997)
X.  Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)



Optical dielectric tensor:
Electronic  response only (τκα=0)
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Optical dielectric tensor:
DPFT expression

• Stationary

• Non-stationary
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Optical dielectric tensor:
Scissors correction

• LDA (and other local functionals ) typically overestimates the
optical dielectric tensor (sometimes up to 25%)

• This can sometimes be empirically corrected using a so-called
scissors correction  (i.e.  an artificial rigid shift of the conduction
bands that adjusts the LDA bandgap - typically too small- to its
experimental value) :

ΔSCI  = Eg
EXP  - Eg

LDA

Ph. Ghosez, X. Gonze and R. W. Godby, Phys. Rev. B 56 , 12811 (1997).



Static dielectric tensor:
Including also the ionic  response
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Atomic relaxation:
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Static dielectric tensor:
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6. In practice



DFPT calculations
• Perform a GS calculation to get the GS wave-functions

• Electric field perturbation
– Perform ddk perturbation to get -i d/ dk |u>
– Perform electric field perturbation

– ANADDB: provides full optical dielectric tensor and the full set of
effective charges.

• Atomic displacement perturbation
– Perform individual atomic displacement perturbations at a given q-point

to get the dynamical matrix

– ANADDB : provides phonon frequencies and eigenvectors (TO
and LO modes) as well as infra-red oscillator strengths and infra-
red dielectric tensor.



Finite difference versus DFPT
• All previous quantities can be alternatively accessed using

finite difference techniques (finite atomic displacements and
finite electric fields).

• Finite difference techniques are directly accessible with
“minor”  implementation effort (Berry phase and finite electric
field approachesd ) but requires a lot of human work to access
individual coefficients in appropriate units and coordinates.

• DFPT requires a huge implementation effort but directly
provides full tensors in appropriate units taking advantage of
symmetry and build a coherent database without any
additional human effort.

DFPT not mandatory but
highly preferred when available!


