
Overview
Into the details

Managing the source code
Summary

Exploring the source code of ABINIT

Y. Pouillon

Université Catholique de Louvain - Louvain-la-Neuve, Belgium

ABINIT Summer School
Santa Barbara, CA, USA

2005/08/27

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

License

The ABINIT package is Free Software
Free for freedom, not price
License: GNU General Public License (GPL)

availability of source code
permission to study, copy and modify the code
permission to redistribute modifications
under the same conditions
non discrimination towards

persons or groups
fields of endeavour

All developer contributions included under GPL

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

License

The ABINIT package is Free Software
Free for freedom, not price
License: GNU General Public License (GPL)

availability of source code
permission to study, copy and modify the code
permission to redistribute modifications
under the same conditions
non discrimination towards

persons or groups
fields of endeavour

All developer contributions included under GPL

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

License

The ABINIT package is Free Software
Free for freedom, not price
License: GNU General Public License (GPL)

availability of source code
permission to study, copy and modify the code
permission to redistribute modifications
under the same conditions
non discrimination towards

persons or groups
fields of endeavour

All developer contributions included under GPL

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Numbering policy

3-digit version numbers: x.y.z, e.g. 4.5.3

x: major version number (2 years)
y: minor version number (4–6 months)
z: debug status number (1–2 months)
−→ 0: maintainer version, unpublished
−→ 1: test version (≈ α)
−→ 2: developers’ version (≈ β)
−→ 3: production version
−→ 4: robust product version
−→ 5: very robust production version
usually:

3 last minor versions: active
older ones: obsolete

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Coding style

All routines follow explicitely ABINIT rules (abirules)

Special format for processing by ROBODOC
(http://www.xs4all.nl/r̃fsber/Robo/robodoc.html)
Documentation available inside each routine
Many comments forced by the ABINIT style
Input or output intent specified
Automatic generation of “parent” and “children” lists
Automatic enforcement of coding rules
Sources available on-line for browsing

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Self-testing

“Self-testing” software concept

≥ 400 PERL-script-driven automatic tests
All capabilities of ABINIT covered
Automatic comparison to reference files
Multi-level analysis

stability −→ how went each test
accuracy −→ diff of floating-point values
diagnostics −→ detailed log file with errors and warnings

can be used as examples for beginners

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Self-testing

“Self-testing” software concept

≥ 400 PERL-script-driven automatic tests
All capabilities of ABINIT covered
Automatic comparison to reference files
Multi-level analysis

stability −→ how went each test
accuracy −→ diff of floating-point values
diagnostics −→ detailed log file with errors and warnings

can be used as examples for beginners

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Self-testing

“Self-testing” software concept

≥ 400 PERL-script-driven automatic tests
All capabilities of ABINIT covered
Automatic comparison to reference files
Multi-level analysis

stability −→ how went each test
accuracy −→ diff of floating-point values
diagnostics −→ detailed log file with errors and warnings

can be used as examples for beginners

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Self-testing

“Self-testing” software concept

≥ 400 PERL-script-driven automatic tests
All capabilities of ABINIT covered
Automatic comparison to reference files
Multi-level analysis

stability −→ how went each test
accuracy −→ diff of floating-point values
diagnostics −→ detailed log file with errors and warnings

can be used as examples for beginners

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Development model

Self-testing

“Self-testing” software concept

≥ 400 PERL-script-driven automatic tests
All capabilities of ABINIT covered
Automatic comparison to reference files
Multi-level analysis

stability −→ how went each test
accuracy −→ diff of floating-point values
diagnostics −→ detailed log file with errors and warnings

can be used as examples for beginners

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The source tree

8 different sections
scripts, ready for local use: bin/
configuration: config/ + configure script
documentation: doc/
external libraries: lib/*/
core source: src/*/
test suite: tests/
maintainer scripts: util/
miscellaneous extra stuff: extras/

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The core source

Subdirectories of src/
12 different levels

defs: “underground” or “root” modules
0–9: all different parts of the code (internal libraries)
main: main programs
hierarchical substructure
−→ each level depends only on preceeding ones

Detailed in doc/developers/dirs_and_files

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The external libraries

Bigger and bigger subset of BLAS / LAPACK routines
S. Gődecker’s FFT routines
Full version of NetCDF
Full version of Nanoquanta libXC
Full version of XMLF90
Miscellaneous non-abirule-compliant routines

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The documentation

Currently being restructured
Dispatch documents into categories:

build
users
developers
maintainers

DFSG: one manpage per binary
Provide at least plain-text and HTML
=⇒ use markdown for now
(http://daringfireball.net/projects/markdown/)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The test suite

Pseudopotentials
Built-in tests

very basic
very fast

Several test series
covering all aspects of ABINIT
may require some time (e.g. physics)
require a lot of free disk space
−→≈ 3Gb for all tests

Tutorial input files

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

ABINIT routines

ABIRULES: 11 sections describing how to write routines
−→ see doc/developers/rules_coding

Routines inside src/: must follow abirules
Fortran 90/95
lower-case characters
locality of information
−→ everything needed contained inside the routine

Other routines: recommendations
should be in Fortran 90/95
should require as few maintenance as possible
minimize their number

To create a new routine: mkroutine <name>

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

ABINIT routines

ABIRULES: 11 sections describing how to write routines
−→ see doc/developers/rules_coding

Routines inside src/: must follow abirules
Fortran 90/95
lower-case characters
locality of information
−→ everything needed contained inside the routine

Other routines: recommendations
should be in Fortran 90/95
should require as few maintenance as possible
minimize their number

To create a new routine: mkroutine <name>

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

ABINIT routines

ABIRULES: 11 sections describing how to write routines
−→ see doc/developers/rules_coding

Routines inside src/: must follow abirules
Fortran 90/95
lower-case characters
locality of information
−→ everything needed contained inside the routine

Other routines: recommendations
should be in Fortran 90/95
should require as few maintenance as possible
minimize their number

To create a new routine: mkroutine <name>

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

ABINIT routines

ABIRULES: 11 sections describing how to write routines
−→ see doc/developers/rules_coding

Routines inside src/: must follow abirules
Fortran 90/95
lower-case characters
locality of information
−→ everything needed contained inside the routine

Other routines: recommendations
should be in Fortran 90/95
should require as few maintenance as possible
minimize their number

To create a new routine: mkroutine <name>

Pouillon Exploring the source code of ABINIT

What a routine looks like: header

!{\src2tex{textfont=tt}}
!!****f* ABINIT/abinit_subroutine
!! NAME
!! abinit_subroutine
!!
!! FUNCTION
!!
!! COPYRIGHT
!! Copyright (C) 2005 ABINIT group (the_author)
!! This file is distributed under the terms of the
!! GNU General Public License, see ~ABINIT/Infos/copyright
!! or http://www.gnu.org/copyleft/gpl.txt .
!!
!! INPUTS
!! argin(sizein)=description
!!
!! OUTPUT
!! argout(sizeout)=description
!!
!! SIDE EFFECTS
!!
!! NOTES
!!
!! PARENTS
!! Will be filled automatically by the parent script
!!
!! CHILDREN
!! Will be filled automatically by the parent script
!!
!! SOURCE

What a routine looks like: declarations

subroutine abinit_subroutine(argin,argout,option,sizein,sizeout)

use defs_basis
implicit none

!Arguments ------------------------------------
integer , intent(in) :: option,sizein,sizeout
integer , intent(in) :: argin(sizein)
integer , intent(out) :: argout(sizeout)
real(dp), intent(out) :: ! to be filled, if needed

!Local variables-------------------------------
integer :: ! to be filled, if needed
real(dp) :: ! to be filled, if needed
!character(len=500) :: message ! to be uncommented, if needed

! ***

!DEBUG
!write(std_out,*)’ abinit_subroutine : enter ’
!ENDDEBUG

What a routine looks like: body

!DEBUG ! to be uncommented, if needed
! if(option/=1 .and. option/=2)then
! write(message,’(a,a,a,a,a,a,i6)’) ch10,&
!& ’ abinit_subroutine: BUG -’,ch10,&
!& ’ The argument option should be 1 or 2,’,ch10,&
!& ’ however, option=’,option
! call wrtout(std_out,message,’COLL’)
! call leave_new(’COLL’)
! endif
! if(sizein<1)then
! write(message,’(a,a,a,a,a,a,i6)’) ch10,&
!& ’ abinit_subroutine: BUG -’,ch10,&
!& ’ The argument sizein should be a positive number,’,ch10,&
!& ’ however, sizein=’,sizein
! call wrtout(std_out,message,’COLL’)
! call leave_new(’COLL’)
! endif
!ENDDEBUG

!DEBUG
!write(std_out,*)’ abinit_subroutine : exit’
!stop
!ENDDEBUG

end subroutine abinit_subroutine
!!***

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Embedded documentation

“Self-documentation” software concept

For each subprogram: formatted header
functional description
copyright reminder, with list of authors
inputs (arguments not modified)
outputs (arguments initialized)
side effects (arguments and variables modified)
warnings
notes or todo list
parents & children (automatically generated)

Translation into HTML by ROBODOC
=⇒ web-browsable source code

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Embedded documentation

“Self-documentation” software concept

For each subprogram: formatted header
functional description
copyright reminder, with list of authors
inputs (arguments not modified)
outputs (arguments initialized)
side effects (arguments and variables modified)
warnings
notes or todo list
parents & children (automatically generated)

Translation into HTML by ROBODOC
=⇒ web-browsable source code

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Supported architectures and compilers

Well-supported architectures
x86 / Linux and Windows
Mac / OS X
DEC Alpha / OSF and Linux
Sun / Solaris and Linux
IBM / AIX and Linux
Cray, Fujitsu, Hitachi, HP, NEC, SGI, VAX

Compilers
On x86: GNU, Intel, ABSoft, NAGWare, PathScale,
Portland
On other architectures: native compilers

Some configurations need workarounds
New ones: let us know!

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The traditional build trilogy

First create a build directory, e.g.:
“make build && cd build”
−→ Will preserve a clean source tree
−→ highly recommended

Then:
1 ../configure [options]
2 make
3 make install

Optionally: “make check” before “make install”

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The traditional build trilogy

First create a build directory, e.g.:
“make build && cd build”
−→ Will preserve a clean source tree
−→ highly recommended

Then:
1 ../configure [options]
2 make
3 make install

Optionally: “make check” before “make install”

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

The traditional build trilogy

First create a build directory, e.g.:
“make build && cd build”
−→ Will preserve a clean source tree
−→ highly recommended

Then:
1 ../configure [options]
2 make
3 make install

Optionally: “make check” before “make install”

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Configure

By default: detection of libraries, workarounds, . . .
Without options: make a safe build / use defaults for install
--prefix=DIR: install into DIR

--disable-parallel: disable build of parallel code
--enable-netcdf: add support for NetCDF
--enable-nqxc: add support for Nanoquanta libXC
--enable-xmlf90: add support for libXMLF90
--with-<lib>-prefix=DIR: look for <lib> in DIR
−→ <lib> = blas, lapack, netcdf, nqxc, xmlf90
Options can be saved in
${HOME}/.abinit/build/<hostname>.ac

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Make

Without arguments: build all main binaries
allseq: build all sequential binaries
<bin>: build main binary <bin>
−→ abinip, abinis, aim, anaddb, band2eps, conducti,
cut3d, lwf, macroave, mrgddb, mrggkk, newsp, optic
check: build binaries and perform selected tests
(still in development)
dist: create source tarball
distcheck

create source tarball
build all binaries from it
perform selected tests

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Install

Default install prefix: /usr/local
Without arguments

use ${prefix}/lib/abinit/x.y/ as base directory
install wrapper script in ${prefix}/bin/
install documentation in
${prefix}/share/doc/abinit/x.y/

make install prefix=DIR: change prefix for DIR
make install DESTDIR=DIR: use DIR as DESTDIR
(packages)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Directory structure
Fortran file structure
Compiling the code

Performing tests

Going in the tests/ directory
make: obtain help on how to perform tests
make test_in: perform built-in tests
make test_<series> start=#a stop=#b

perform tests of <series>
−→ cpu, fast, physics, tutorial, v1, v2, v3, v4
start at test #a
stop at test #b
results stored in <series>/„tmp_make_tests
to perform only one test: use either start or stop
omitting start and stop: perform whole series
(requires a lot of free disk space)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Ensuring portability

Autoconf =⇒ build on many architectures
Installation and tests can be automated

set-up only once for a given architecture
several builds sharing the same physical source tree
can be built on a “compile farm”

Test suite highly portable (PERL)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Highly-distributed development

More than 40 active developers all around the world
Many other occasional contributors
=⇒ version management by GNU Arch

Highly-customizable design (suits your project)
Contributions stored by category--branch--version--revision
One or more branches per developer (high flexibility)
Clever merge system

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Highly-distributed development

More than 40 active developers all around the world
Many other occasional contributors
=⇒ version management by GNU Arch

Highly-customizable design (suits your project)
Contributions stored by category--branch--version--revision
One or more branches per developer (high flexibility)
Clever merge system

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Highly-distributed development

More than 40 active developers all around the world
Many other occasional contributors
=⇒ version management by GNU Arch

Highly-customizable design (suits your project)
Contributions stored by category--branch--version--revision
One or more branches per developer (high flexibility)
Clever merge system

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Outline

1 Overview
Development model

2 Into the details
Directory structure
Fortran file structure
Compiling the code

3 Managing the source code
Tools & methods
Ongoing efforts

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Growing size of the code

From 2000 to 2005
source code:

105 −→ 292 kLines
364 −→ 981 routines
234 −→ 418 tests

package:
2000 −→ 3100 files
6.7Mb −→ 17.5Mb

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Strategic choices

Current challenges
1 Improve the quality of the code along with its growth in size
2 Continue to provide a high-quality support
3 Enhance the integration of ABINIT with other codes

Three lines of action
Improving conformance to programming standards
Refining the directory structure
Increasing modularity

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Strategic choices

Current challenges
1 Improve the quality of the code along with its growth in size
2 Continue to provide a high-quality support
3 Enhance the integration of ABINIT with other codes

Three lines of action
Improving conformance to programming standards
Refining the directory structure
Increasing modularity

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Strategic choices

Current challenges
1 Improve the quality of the code along with its growth in size
2 Continue to provide a high-quality support
3 Enhance the integration of ABINIT with other codes

Three lines of action
Improving conformance to programming standards
Refining the directory structure
Increasing modularity

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Strategic choices

Current challenges
1 Improve the quality of the code along with its growth in size
2 Continue to provide a high-quality support
3 Enhance the integration of ABINIT with other codes

Three lines of action
Improving conformance to programming standards
Refining the directory structure
Increasing modularity

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Improving conformance to standards

Goals:
conciliate quality and growth
take benefit from free (libre) development tools
install ABINIT system-wide in standard directories
be able to create Debian and RPM packages

Step-by-step:
1 uncompress in abinit-<version>/ (4.4.3)
2 strengthen code quality checks (4.4.3 −→ 5.0.3)
3 add support for the GNU Autotools (4.4.3 −→ 5.0.3)
4 harmonize preprocessing options (4.5.3 −→ 5.0.3)
5 improve integration of test suite (4.5.3 −→ 5.0.3)
6 restructure and enhance documentation (4.5.3 −→ ?)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Refining the directory structure

Conform to the GNU coding standards
mandatory plain-text files in top directory, e.g.
README, INSTALL, COPYING
base documentation in plain-text format in doc/
modular directory structure
one Makefile per source directory

Better separation between
source and non-source files
use, development, and maintenance

Increase modularity, aka “breaking the monolith”
Start to share responsibilities

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Refining the directory structure

Conform to the GNU coding standards
mandatory plain-text files in top directory, e.g.
README, INSTALL, COPYING
base documentation in plain-text format in doc/
modular directory structure
one Makefile per source directory

Better separation between
source and non-source files
use, development, and maintenance

Increase modularity, aka “breaking the monolith”
Start to share responsibilities

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Refining the directory structure

Conform to the GNU coding standards
mandatory plain-text files in top directory, e.g.
README, INSTALL, COPYING
base documentation in plain-text format in doc/
modular directory structure
one Makefile per source directory

Better separation between
source and non-source files
use, development, and maintenance

Increase modularity, aka “breaking the monolith”
Start to share responsibilities

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Refining the directory structure

Conform to the GNU coding standards
mandatory plain-text files in top directory, e.g.
README, INSTALL, COPYING
base documentation in plain-text format in doc/
modular directory structure
one Makefile per source directory

Better separation between
source and non-source files
use, development, and maintenance

Increase modularity, aka “breaking the monolith”
Start to share responsibilities

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Increasing modularity

Monolithic structure not efficient beyond a critical size
(already reached by ABINIT)

maintenance heavier and heavier
dependency tracking becomes a nightmare
release timeline cannot be respected anymore

More and more code re-use
−→ blas, lapack
−→ netcdf, libxc, xmlf90
Future projects
−→ BigDFT (order-N methods in ABINIT)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Increasing modularity

Monolithic structure not efficient beyond a critical size
(already reached by ABINIT)

maintenance heavier and heavier
dependency tracking becomes a nightmare
release timeline cannot be respected anymore

More and more code re-use
−→ blas, lapack
−→ netcdf, libxc, xmlf90
Future projects
−→ BigDFT (order-N methods in ABINIT)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Tools & methods
Ongoing efforts

Increasing modularity

Monolithic structure not efficient beyond a critical size
(already reached by ABINIT)

maintenance heavier and heavier
dependency tracking becomes a nightmare
release timeline cannot be respected anymore

More and more code re-use
−→ blas, lapack
−→ netcdf, libxc, xmlf90
Future projects
−→ BigDFT (order-N methods in ABINIT)

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Summary

Big source code growing at a constant pace
Freedom to use, copy, modify and redistribute (GNU GPL)
Strict development model, enforced by scripts
Hierarchical structure, to ease dependency tracking
Build: configure + make + make install trilogy
Current projects affect structure of source code
“Breaking the monolith”

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Acknowledgments

All α- and β-testers of the 5.0 version

CISM (center for high-performance computing in
Louvain-la-Neuve)

ABINIT community

Thank you for your time!

Pouillon Exploring the source code of ABINIT

Overview
Into the details

Managing the source code
Summary

Acknowledgments

All α- and β-testers of the 5.0 version

CISM (center for high-performance computing in
Louvain-la-Neuve)

ABINIT community

Thank you for your time!

Pouillon Exploring the source code of ABINIT

	Overview
	Development model

	Into the details
	Directory structure
	Fortran file structure
	Compiling the code

	Managing the source code
	Tools & methods
	Ongoing efforts

	Summary

