ABINIT ABINIT ABINIT ABINIT

Y. Pouillon

Université Catholique de Louvain - Louvain-la-Neuve, Belgium

ABINIT Summer School Santa Barbara, CA, USA 2005/08/26

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ののの

Outline

Introduction to parallelism

- Parallel environments
- A brief overview of MPI

- Currently available
- Ongoing efforts

크 > 크

Introduction to parallelism

Parallelism inside ABINIT Summary Parallel environments A brief overview of MP

Outline

- A brief overview of MPI
- Parallelism inside ABINIT
 Currently available
 Ongoing efforts

→ Ξ → < Ξ →</p>

< 🗇 ▶

Parallel environments A brief overview of MPI

Types of parallelism

Parallel computing

- Work done in separate processes
- 2 Data exchange for communication

• SIMD: Single-Instruction, Multiple-Data (Data-Parallel)

- homogeneous environments
- examples: SMP machines, HPF, OpenMP
- MIMD: Multiple-Instruction, Multiple-Data
 - heterogeneous environments
 - examples: clusters, MPI
- Either distributed or shared memory
- Data transfer one-sided or cooperative

< 🗇 🕨

(七日)) (日日)

Parallel environments A brief overview of MPI

Types of parallelism

Parallel computing

- Work done in separate processes
- 2 Data exchange for communication
 - SIMD: Single-Instruction, Multiple-Data (Data-Parallel)
 - homogeneous environments
 - examples: SMP machines, HPF, OpenMP
 - MIMD: Multiple-Instruction, Multiple-Data
 - heterogeneous environments
 - examples: clusters, MPI
 - Either distributed or shared memory
 - Data transfer one-sided or cooperative

프 🖌 🛪 프 🕨

Parallel environments A brief overview of MPI

Popular environments

• OpenMP:

- shared-memory parallel platforms
- simple, flexible, portable, scalable
- supported by many hardware & software vendors
- ABINIT support withdrawn from 4.2 version
- MPI: Message-Passing Interface
 - general-purpose parallel API
 - flexible, portable, scalable
 - standard designed by the MPI Forum (http://www.mpi-forum.org/)
 - standard versions: MPI-1 (1994), MPI-2 (1997)
 - most parallel parts of ABINIT

・同 ト ・ ヨ ト ・ ヨ ト

Parallel environments A brief overview of MP

Exercise: a simple algorithm

- Initialization: number of neighbours you have
- Compute average of your neighbours' values
- Subtract yours
- Repeat until done

(A) E > (A) E > (B)

Parallel environments A brief overview of MP

Exercise: a simple algorithm

- Initialization: number of neighbours you have
- Compute average of your neighbours' values
- Subtract yours
- Repeat until done

Questions

- How do you get values from your neighbours?
- Which step or iteration do they correspond to? Do you know? Do you care?
- How do you decide when you are done?

< 🗇 🕨

- ⊒ →

Parallel environments A brief overview of MPI

Outline

- A brief overview of MPI
- Parallelism inside ABINIT
 Currently available
 Ongoing efforts

→ Ξ → < Ξ →</p>

< 🗇 ▶

Parallel environments A brief overview of MPI

MPI: Message-Passing Interface

- Normalized functions for inter-process communications
- Heterogeneous environments
 - \implies portability of source code
- Easy-to-use, comprehensive and powerful
- Each process works on local data
- Data shared by sending/receiving "messages"
- C and Fortran supported
- Developer's tasks:
 - balance the load between processes
 - minimize communication
 - "superpose" work and communications

・ 同 ト ・ ヨ ト ・ ヨ ト …

Parallel environments A brief overview of MPI

Basic concepts

- All processors execute the same code
- Communications:
 - peer-to-peer: involving a pair of processes
 - collective: involving a group of processes
- All MPI functions start with MPI_
- All MPI functions return an error code (= MPI_SUCCESS if OK)
- Definition of portable types:
 - MPI_INTEGER
 - MPI_REAL
 - o ...

★ E ► ★ E ► _ E

Parallel environments A brief overview of MPI

Parallelizing a code: a silly example

Sequential

- hello_seq.f90:
 - program hello_seq
 - write (*,*) "Hello, world!"
 - end program hello_seq

- f90 -o hello_seq hello_seq.f90
- ./hello_seq

Parallel

- hello_par.f90:
 - program hello_par
 - #include "mpif.h"
 - integer :: err
 - call MPI_INIT(err)
 write (*,*) "Hello, world!"
 call MPI_FINALIZE(err)
 - end program hello_par
- f90 -I/usr/lib/lam/include \ -L/usr/lib/lam/lib -lmpi \ -o hello_par hello_par.f90

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

🔍 mpirun -np 4 hello_par

Parallel environments A brief overview of MPI

Parallelizing a code: a silly example

Sequential

hello_seq.f90:

program hello_seq

write (*,*) "Hello, world!"

end program hello_seq

f90 -o hello_seq hello_seq.f90

./hello_seq

Parallel

hello_par.f90:

program hello_par

#include "mpif.h"

integer :: err

call MPI_INIT(err)
write (*,*) "Hello, world!"
call MPI_FINALIZE(err)

end program hello_par

f90 -I/usr/lib/lam/include \
 -L/usr/lib/lam/lib -lmpi \
 -o hello_par hello_par.f90

・ロット (雪) (日) (日) (日)

🕨 mpirun -np 4 hello_par

Parallel environments A brief overview of MPI

All-in-one

Using only one source file

```
hello.F90:
                                ● f90 -o hello_seg hello.F90
                                ● f90 -DMPI \
  program hello
                                       -I/usr/lib/lam/include \
  #if defined MPT
                                       -L/usr/lib/lam/lib -lmpi \
  #include "mpif.h"
                                       -o hello_par hello_par.f90
   integer :: err
                                ./hello_seq
  #endif
  #if defined MPT
                                mpirun -np 4 hello par
   call MPI INIT(err)
  #endif
   write (*,*) "Hello, world!"
  #if defined MPI
```

#endif

end program hello

call MPI FINALIZE(err)

Pouillon ABINIT ABINIT ABINIT ABINIT

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Currently available Ongoing efforts

Outline

A brief overview of MPI

→ Ξ → < Ξ →</p>

< 🗇 ▶

Currently available Ongoing efforts

K-point & spin parallelism

- Very efficient: few communications needed
- Optimal on periodic systems requiring a lot of resources
- Set-up automatically by abinip
- Ideal # of processors: *nkpt* × *nspden*
- Can be mixed with band parallelism
- Few limitations

A E > A E >

Currently available Ongoing efforts

Band parallelism

- Systems with a lot of bands & few k-points
 - \longrightarrow typically: molecules in big boxes (1 k-point)
- Controlled by *wfoptalg* & *nbdblock*
- Not tested beyond *nbdblock* = 4 (not expected to be efficient though)
- Recommended values:
 - wfoptalg = 1
 - nbdblock = 2–4
- Typical # of processors: 4-8

(過) (ヨ) (ヨ) (ヨ)

Currently available Ongoing efforts

Outline

A brief overview of MPI

Ongoing efforts

→ Ξ → < Ξ →</p>

< 🗇 ▶

Parallel FFT

- Still very experimental in ABINIT
- Activated by -DMPIFFT at compile-time
- Controlled by *fft_opt_lob* input variable
- Other way: take benefit from existing libraries, e.g. FFTW

・ 同 ト ・ ヨ ト ・ ヨ ト …

Ongoing efforts

Currently available Ongoing efforts

Parallel I/O

- POSIX: filesystem portability and optimization
 - \longrightarrow only for sequential programs
- MPI-I/0
 - partitioning of file data among processes
 - data transfer between process memories and files
 - asynchronous I/O, strided access
 - control over physical file layout on disks
 - original model based on derived datatypes (instead of I/O access modes)
- Implementation in ABINIT still very incomplete
- Activated by -DMPIO at compile-time

・ 同 ト ・ ヨ ト ・ ヨ ト -

Summary

- Many parallel environments available
- Parallelize a code is a delicate operation
- MPI: one of the most popular, highly portable
 → choice for ABINIT
- ABINIT is already parallelized wrt:
 - k-points / spin-polarization
 - bands (less efficient)
 - specific tasks (e.g. TDDFT)
 - Ongoing efforts include:
 - parallel FFT
 - parallel I/O (MPIO)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

References

- Section on parallel computing from Wikipedia http://en.wikipedia.org/wiki/Parallel_computing
- MPI Forum website http://www.mpi-forum.org/
- Open MPI project website http://www.open-mpi.org/
- MPI tutorial from Argonne National Laboratory http://www-unix.mcs.anl.gov/mpi/tutorial/
- MPI tutorials from the LAM-MPI project http://www.lam-mpi.org/tutorials/
- MPI par l'exemple http://bigbrother.pcpm.ucl.ac.be/mpi/mpi.html

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Acknowledgments

- S. Dubois, M. Verstraete, X. Gonze
- CISM (center for high-performance computing in Louvain-la-Neuve)
- ABINIT community

Thank you for your time!

・同 ト ・ ヨ ト ・ ヨ ト

Acknowledgments

- S. Dubois, M. Verstraete, X. Gonze
- CISM (center for high-performance computing in Louvain-la-Neuve)
- ABINIT community

Thank you for your time!

A ■

★ 문 ► ★ 문 ►