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Density Functional Theory 
The Basis of Most Modern Calculations

Hohenberg-Kohn;  Kohn-Sham – 1965
Defined a new approach to the 

many-body interacting electron problem
• Yesterday 

– Brief statement of the Hohenberg-Kohn theorems and 
the Kohn-sham Ansatz

– Overview of the solution of the Kohn-Sham equations and the 
importance of pseudopotentials in modern methods   

• Today
– Deeper insights into the Hohenberg-Kohn theorems and 

the Kohn-sham Ansatz
– The nature of the exchange-correlation functional
– Understanding the limits of present functionals and 

the challenges for the future   
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electrons in an external potentialInteracting
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The basis of most modern calculations
Density Functional Theory (DFT)

• Hohenberg-Kohn (1964)

• All properties of the many-body system are determined by 
the ground state density n0(r)

• Each property is a functional of the ground state density 
n0(r) which is written as  f [n0]

• A functional f [n0] maps a function to a result: n0(r) → f
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The Hohenberg-Kohn Theorems

n0(r) → Vext(r)   (except for constant)
→ All properties
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The Hohenberg-Kohn Theorems

Minimizing E[n] for a given Vext(r) → n0(r) and E
In principle, one can find all other properties and 
they are functionals of n0(r).
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The Hohenberg-Kohn Theorems - Proof



The Hohenberg-Kohn Theorems - Continued

• Generalization by Levy and Lieb
– Recast as a two step process

• Consider all many-body wavefunctions Ψ with the same density
• First, minimize for a given density n
• Next, minimize n to find density with lowest energy n0

• What is accomplished by the Hohenberg-Kohn theorems?

• Existence proofs

• A Nobel prize for this???
• The genius is the next step  –

to realize that this provides a new way to 
approach the many-body problem
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The Kohn-Sham Ansatz

• Kohn-Sham (1965) – Replace original many-body problem 
with an independent electron problem – that can be solved!

• The ground state density is required to be the same as the 
exact density 

• Only the ground state density and energy are required to be the 
same as in the original many-body system
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The Kohn-Sham Ansatz II

• From Hohenberg-Kohn the ground state energy is a 
functional of the density E0[n], minimum at n = n0

• From Kohn-Sham 

Exchange-Correlation
Functional – Exact theory
but unknown functional! 

Equations for independent
particles  - soluble

• The new paradigm – find useful, approximate functionals
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The Kohn-Sham Ansatz III

• Approximations to the functional Exc[n]
• Requires information on the many-body system of 

interacting electrons
• Local Density Approximation - LDA

• Assume the functional is the same as a model problem –
the homogeneous electron gas

• Exc has been calculated as a function of density
using quantum Monte Carlo methods (Ceperley & Alder)

• Gradient approximations - GGA
• Various theoretical improvements for electron density 

that is varies in space 
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What is Exc[n] ?

• Exchange and correlation → around each electron, other 
electrons tend to be excluded – “x-c hole”

• Excis the interaction of the electron with the “hole” –
spherical average – attractive – Exc[n] < 0.

Exchange hole in Ne atom
Fig. 7.2 Gunnarsson, et. al. [348]
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Exchange-correlation (x-c) hole in silicon

• Calculated by Monte Carlo methods
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Fig. 7.3 - Hood, et. al. [349]

Hole is reasonably well localized near the electron
Supports a local approximation
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Exchange-correlation (x-c) hole in silicon

• Calculated by Monte Carlo methods

Exchange-correlation hole – spherical average
Bond Center Interstitial position Comparison to scale
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x-c hole close to that in the homogeneous gas in the most 
relevant regions of space
Supports local density approximation ! Fig. 7.4 - Hood, et. al. [349]

R. Martin - Density Functional Theory - Lecture II - UCSB - 8/2005 15



The Kohn-Sham Equations

• Assuming a form for Exc[n]
• Minimizing energy (with constraints)  → Kohn-Sham Eqs.

Constraint – required
Exclusion principle for
independent particles

Eigenvalues are 
approximation
to the energies to 
add or subtract 
electrons 
–electron bands
More later
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Example of Results – Test Case

• Hydrogen molecules - using the LSDA
(from O. Gunnarsson) 
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Comparisons – LAPW – PAW -
- Pseudopotentials (VASP code)

• a – lattice constant;   B – bulk modulus;   m – magnetization

• aHolzwarth , et al.; bKresse & Joubert; cCho & Scheffler; dStizrude, et al.
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What about eigenvalues?
• The only quantities that are supposed to be correct in the 

Kohn-Sham approach are the density, energy, forces, ….
• These are integrated quantities

– Density  n(r ) = Σi |Ψi(r )|2
– Energy  Etot = Σi εi + F[n] 
– Force FI = - dEtot / dRI where RI = position of nucleus I

• What about the individual Ψi(r ) and εi ?
– In a non-interacting system, εi are the energies to add and subtract 

“Kohn-Sham-ons” – non-interacting “electrons”
– In the real interacting many-electron system, energies to add and 

subtract electrons are well-defined only at the Fermi energy

• The Kohn-Sham Ψi(r ) and εi are approximate functions
- a starting point for meaningful many-body calculations
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Electron Bands

• Understood since the 1920’s - independent electron theories 
predict that electrons form bands of allowed eigenvalues, with
forbidden gaps 
• Established by experimentally for states near the Fermi energy

R. Martin - Density Functional Theory - Lecture II - UCSB - 8/2005 20

Extra added electrons
go in bottom of 
conduction band

Missing electrons
(holes) go in top of 

valence band

Empty Bands

Silicon

Gap

Filled Bands



Bands and the “Band Gap Problem”
• Excitations are NOT well-predicted by 

the “standard” LDA, GGA forms of DFT
Example of Germanium

Ge is a 
metal 
in LDA!
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M. Rohlfing, et al
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The “Band Gap Problem”
• Excitations are NOT well-predicted by 

the “standard” LDA, GGA forms of DFT
The “Band Gap Problem”

Orbital dependent DFT is 
more complicated but 
gives improvements -
treat exchange better, e.g,
“Exact Exchange”

M. Staedele et al, PRL 79, 2089 (1997)

Ge is a 
metal 
in LDA!
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Failures!
• All approximate functionals fail at some point!
• Most difficult cases

– Mott Insulators – often predicted to be metals 
– Metal-insulator Transitions
– Strongly correlated magnetic systems
– Transiton metal oxides 
– Hi-Tc materials 
– . . .
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Conclusions I
• Density functional theory is by far the most widely 

applied  “ab intio” method used in for “real 
materials” in physics, chemistry, materials science

• Approximate forms have proved to be very 
successful

• BUT there are failures
• No one knows a feasible approximation valid for  

all problems – especially for cases with strong 
electron-electron correlations
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Conclusions II
• Exciting arenas for theoretical predictions

– Working together with Experiments
– Realistic simulations under real conditions
– Molecules and clusters in solvents, . . .
– Catalysis in real situations
– Nanoscience and Nanotechnology
– Biological problems

• Beware -- understand what you are doing!
– Limitations of present DFT functionals
– Use codes properly and carefully
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Conclusions III
• Basis for further theoretical developments

– “GW” many-body calculations starting from DFT 
wavefunctions

– Quantum Monte Carlo many-body calculations with trial 
functions generated from from DFT wavefunctions

– Dynamical Mean Field Theory – done for models now 
with information taken from DFT calculations

– Functional of Green’s functions and dynamical spectral 
functions – generalizations of DFT

• Exciting time for developments in the 
theory of interacting electrons
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