First Principles Calculations for Condensed Matter and Nanoscience

International Center for Materials Research University of California at Santa Barbara August 22 - September 3, 2005

Richard M. Martin University of Illinois at Urbana-Champaign

Density Functional theory

Today – Introduction – overview and accomplishments **Tomorrow** – Behind the functionals – limits and challenges

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Density Functional theory Introduction

Richard M. Martin

Based upon

Cambridge University Press, 2004

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

A long way in 80 years

L. de Broglie – Nature 112, 540 (1923).

- E. Schrodinger 1925,
- Pauli exclusion Principle 1925
- Fermi statistics 1926
- Thomas-Fermi approximation 1927
- First density functional Dirac 1928
- Dirac equation relativistic quantum mechanics 1928

Quantum Mechanics — Technology Greatest Revolution of the 20th Century

- Bloch theorem 1928
- Wilson Implications of band theory Insulators/metals –1931
- Wigner- Seitz Quantitative calculation for Na 1935
- Slater Bands of Na 1934 (proposal of APW in 1937)
- Bardeen Fermi surface of a metal 1935
- First understanding of semiconductors 1930's
- Invention of the Transistor 1940's
 - Bardeen student of Wigner
 - Shockley student of Slater

The Basic Methods of Electronic Structure

- Hylleras Numerically exact solution for $H_2 1929$
 - Numerical methods used today in modern efficient methods
- Slater Augmented Plane Waves (APW) 1937
 - Not used in practice until 1950's, 1960's electronic computers
- Herring Orthogonalized Plane Waves (OPW) 1940
 - First realistic bands of a semiconductor Ge Herrman, Callaway (1953)
- Koringa, Kohn, Rostocker Multiple Scattering (KKR) 1950's
 - The "most elegant" method Ziman
- Boys Gaussian basis functions 1950's
 - Widely used, especially in chemistry
- Phillips, Kleinman, Antoncik, Pseudopotentials 1950's
 - Hellman, Fermi (1930's) Hamann, Vanderbilt, ... 1980's
- Andersen Linearized Muffin Tin Orbitals (LMTO) 1975
 - The full potential "L" methods LAPW,

Basis of Most Modern Calculations Density Functional Theory

- Hohenberg-Kohn; Kohn-Sham 1965
- Car-Parrinello Method 1985
- Improved approximations for the density functionals
 - Generalized Gradient Approximations, ...
- Evolution of computer power
- Nobel Prize for Chemistry, 1998, Walter Kohn
- Widely-used codes
 - ABINIT, VASP, CASTEP, ESPRESSO, CPMD, FHI98md, SIESTA, CRYSTAL, FPLO, WEIN2k, . . .

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Most Cited Papers in APS Journals

- From Physics Today, June, 2005
- 11 papers published since 1893 with > 1000 citations in APS journals

Table 1. Physical Review Articles with more than 1000 Citations Through June 2 <u>003</u>													
Publication	# cites	Av. age	Title	Author(s)									
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham									
PR 136, B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn									
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger									
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder									
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Sch	rieffer								
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg									
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson									
PR 124, 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano									
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan									
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern									
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack									
PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.													

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Density Functional Theory The Basis of Most Modern Calculations

Hohenberg-Kohn; Kohn-Sham – 1965 Defined a new approach to the many-body interacting electron problem

- Today
 - Brief statement of the Hohenberg-Kohn theorems and the Kohn-sham Ansatz
 - Overview of the solution of the Kohn-Sham equations and the importance of pseudopotentials in modern methods
- Tomorrow
 - Deeper insights into the Hohenberg-Kohn theorems and the Kohn-sham Ansatz
 - The nature of the exchange-correlation functional
 - Understanding the limits of present functionals and the challenges for the future

The Fundamental Hamiltonian

Interacting electrons in an external potential

$$\hat{H} = -\sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$
$$-\sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|}$$

- Only one small term: The kinetic energy of the nuclei
- If we omit this term, the nuclei are a fixed external potential acting on the electrons
- The final term is essential for charge neutrality but is a classical term that is added to the electronic part

9

The basis of most modern calculations Density Functional Theory (DFT)

• Hohenberg-Kohn (1964)

$$V_{ext}(\mathbf{r}) \bigoplus_{\substack{\Downarrow \\ \Downarrow \\ \Psi_i(\{\mathbf{r}\}) \\ \Rightarrow \\ \Psi_0(\{\mathbf{r}\})}} n_0(\mathbf{r})$$

- All properties of the many-body system are determined by the ground state density n₀(r)
- Each property is a functional of the ground state density $n_0(r)$ which is written as $f[n_0]$
- A functional f $[n_0]$ maps a function to a result: $n_0(r) \rightarrow f$

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

10

The Kohn-Sham Ansatz

- Kohn-Sham (1965) Replace original many-body problem with an independent electron problem that can be solved!
- The ground state density is required to be the same as the exact density

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

$$V_{ext}(\mathbf{r}) \stackrel{HK}{\leftarrow} n_0(\mathbf{r}) \stackrel{KS}{\leftrightarrow} n_0(\mathbf{r}) \stackrel{HK_0}{\Longrightarrow} V_{KS}(\mathbf{r})$$

$$\psi_i(\{\mathbf{r}\}) \Rightarrow \Psi_0(\{\mathbf{r}\}) \stackrel{HK}{\leftrightarrow} \psi_{i=1,N_e}(\mathbf{r}) \leftarrow \psi_i(\mathbf{r})$$

• Only the ground state density and energy are required to be the same as in the original many-body system

The Kohn-Sham Ansatz II

- From Hohenberg-Kohn the ground state energy is a functional of the density $E_0[n]$, minimum at $n = n_0$
- From Kohn-Sham

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

• The new paradigm – find useful, approximate functionals

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005 12

The Kohn-Sham Equations

- Assuming a form for $E_{xc}[n]$
- Minimizing energy (with constraints) \rightarrow Kohn-Sham Eqs. $n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1}^{\sigma} |\psi_i^{\sigma}(\mathbf{r})|^2$,

$$E_{KS} = \frac{1}{2} \sum_{\sigma} \sum_{i=1} |\nabla \psi_i^{\sigma}|^2 + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II} + E_{xc}[n].$$

$$\delta E_{KS}$$

Eigenvalues are

Constraint – required Exclusion principle for independent particles $\frac{\delta E_{KS}}{\delta \psi_i^{\sigma*}(\mathbf{r})} = 0,$

$$\langle \psi_i^{\sigma} | \psi_j^{\sigma'} \rangle = \delta_{i,j} \delta_{\sigma,\sigma'}.$$

$$\left(-\frac{1}{2}\nabla^2 + V_{KS}^{\sigma}(\mathbf{r}), -\varepsilon_i^{\sigma}\right)\psi_i^{\sigma}(\mathbf{r}) = 0 \qquad (3)$$

approximation to the energies to add or subtract electrons –electron bands More later

$$V_{KS}^{\sigma}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \frac{\delta E_{Hartree}}{\delta n(\mathbf{r},\sigma)} + \frac{\delta E_{xc}}{\delta n(\mathbf{r},\sigma)}$$
$$= V_{ext}(\mathbf{r}) + V_{Hartree}(\mathbf{r}) + \frac{V_{xc}^{\sigma}(\mathbf{r})}{V_{xc}(\mathbf{r})}(4)$$

(1)

(2)

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005 13

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Calculations on Materials Molecules, Clusters, Solids,

• Basic problem - many electrons in the presence of the nuclei

- Core states strongly bound to nuclei atomic-like
- Valence states change in the material determine the bonding, electronic and optical properties, magnetism,

The Three Basic Methods for Modern Electronic Structure Calculations

• Plane waves

- The simplicity of Fourier Expansions
- The speed of Fast Fourier Transforms
- Requires smooth pseudopotentials

Localized orbitals

- The intuitive appeal of atomic-like states
- Simplest interpretation in tight-binding form
- Gaussian basis widely used in chemistry
- Numerical orbitals used in SIESTA

Augmented methods

- "Best of both worlds" also most demanding
- Requires matching inside and outside functions
- Most general form (L)APW

Plane Waves

• The most general approach

• Kohn-Sham Equations in a crystal

$$\sum_{m'} H_{m,m'}(\mathbf{k}) c_{i,m'}(\mathbf{k}) = \varepsilon_i(\mathbf{k}) c_{i,m}(\mathbf{k})$$
(2)

$$H_{m,m'}(\mathbf{k}) = \frac{\hbar^2}{2m_e} |\mathbf{k} + \mathbf{G}_m|^2 \delta_{m,m'} + V_{eff}(\mathbf{G}_m - \mathbf{G}_{m'}).$$
(3)

• The problem is the atoms! High Fourier components!

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

17

Plane Waves

• (L)APW method

- Augmentation: represent the wave function inside each sphere in spherical harmonics
 - "Best of both worlds"
 - But requires matching inside and outside functions
 - Most general form can approach arbitrarily precision

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Plane Waves

• Pseudopotential Method – replace each potential

- 1 Generate Pseudopotential in atom (spherical) 2 use in solid
- Pseudopotential can be constructed to be weak
 - Can be chosen to be smooth
 - Solve Kohn-Sham equations in solid directly in Fourier space

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005 19

- Properties of crystals many calculations are now "routine"
 - Definitive tests of the theory comparisons with experiments
- Calculations for complex systems
 - Theory provides key role along with experiments
 - Understanding
 - Predictions
 - Direct simulation of atomic scale quantum phenomena
- Examples
 - Surfaces, interfaces, defects,
 - Thermodynamic phase transitions, Liquids, Melting, ...
 - Nanostructures in real environments, ...
 - Large complex molecules in solution,

Electron density in silicon

"Electronic Structure: Basic Theory and Practical Methods", R. M. Martin, Cambridge University Press, 2004 – Calculated using ABINIT

21

 In Si the black and grey

 atoms are identical

 R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Charge Density of Si – Experiment - LAPW calculations with LDA, GGA

- Electron density <u>difference</u> from sum of atoms
 - Experimental density from electron scattering
 - Calculations with two different functionals
 - J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997).
 - Very similar results with pseudopotentials
 - O. H. Nielsen and R. M. Martin (1995)

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Comparisons – LAPW – PAW – - Pseudopotentials (VASP code)

Method	C		Si		CaF ₂		bcc Fe		
	a	B	a	B	a	B	a	B	m
NCPP ^a	3.54	460	5.39	98	5.21	90	2.75 ^c	226 ^{<i>c</i>}	
PAW^a	3.54	460	5.38	98	5.34	100			
PAW^b	3.54	460	5.40	95	5.34	101	2.75	247	2.00
$USPP^b$	3.54	461	5.40	95	5.34	101	2.72	237	2.08
$LAPW^{a}$	3.54	470	5.41	98	5.33	110	2.72^{d}	245^d	2.04^d
EXP^a	3.56	443	5.43	99	5.45	85-90	2.87 ^d	172^{d}	2.12^{d}

- a lattice constant; B bulk modulus; m magnetization
- ^aHolzwarth, *et al.*; ^bKresse & Joubert; ^cCho & Scheffler; ^dStizrude, *et al.*

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005 23

Phase Transitions under Pressure Silicon is a Metal for P > 110 GPa

- Demonstration that pseudopotentials are an accurate "ab initio" method for calculations of materials
- Results are close to experiment!
 - M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
 - R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, Phys. Rev. B 30, 3210 (1982).
 R. Martin Density Functional Theory Introduction UCSB 8/2005 24

Phonons Comparison of theory and experiment

- Calculated from the response function – "Density functional perturbation theory"
- Now a widely-used ٠ tool in ABINIT

• Instability and predicted ferroelectric displacement in BaTiO₃ - calculated with the SIESTA and LAPW codes

Many calculations done with ABINIT, ...

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Atomic scale Au wires on Si (557) surface

STM image of self-assembled atomic "wires" on a Si surface Crain, et al, Phys Rev B 69, 125401 (2004)

Theoretical prediction – using SIESTA code - of structure in very good agreement with experiment– done later! Sanchez-Portal and R. M. Martin, Surf. Sci. 532, 655 (2003)

Explains one-dimensional metallic bands observed by photoemission

The Car-Parrinello Advance

- Car-Parrinello Method 1985
 - Simultaneous solution of Kohn-Sham equations for electrons and Newton's equations for nuclei
 - Iterative update of wavefunctions instead of diagonalization
 - FFTs instead of matrix operations N lnN instead of N^2 or N^3
 - Trace over occupied subspace to get total quantities (energy, forces, density, ...) instead of eigenfunction calculations
 - Feasible due to simplicity of the plane wave pseudopotential method
- A revolution in the power of the methods
 - Relaxation of positions of nuclei to find structures
 - Simulations of solids and liquids with nuclei moving thermally
 - Reactions, . . .
- Stimulated further developments VASP, ABINIT, SIESTA, ...

Simulation of Liquid Carbon

- Solid Line: Car-Parrinello plane wave pseudopotential method (Galli, et al, 1989-90)
- Dashed Line: TB potential of Xu, et al (1992)

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Example of Thermal Simulation

- Phase diagram of carbon
- Full Density Functional "Car-Parrinello" simulation
- G. Galli, et al (1989); M. Grumbach, et al. (1994)

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

30

- Unraveling the steps in the Ziegler-Nata reaction
 - Industrial process for production of polyethylene
 - Simulations with Car-Parrinello MD plane wave pseudopotentials M. Boero, et al.

R. Martin - Density Functional Theory - Introduction - UCSB - 8/2005

Nitrogen under pressure – Recent discoveries

- Used SIESTA code for MD simulation
- Sample structures tested using ABINIT

Conclusions to this point

- A long way in 80 years!
- **Electronic Structure** is the quintessential many-body problem of quantum mechanics
 - Interacting electrons \rightarrow real materials and phenomena
- **Density functional theory** is by far the most widely applied *"ab intio*" method used for "real materials" in physics, chemistry, materials science
 - Approximate forms have proved to be very successful
 - BUT there are shortcomings and failures!
- Momentous time for theory
 - New opportunities and challenges
 - Requires care and understanding of limitations