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Back to undergrad Quantum Mechanics (I)
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Starting point : the Time-Dependent Schrödinger equation

If the Hamiltonian does not depend on time,

we have the following ansatz

e.g. for 1 particle



Time-Dependent Density Functional Theory 4

Back to undergrad Quantum Mechanics (II)
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Why are we interested by time dependence ?

Electrons do not stay in a stationary (eigen) state ! (except
GS)
Spontaneously emit photon => ground state

Time-dependent perturbations of a system :
typically time-dependent electric field (photons)
-small perturbations (linear regime for electric field)
-large perturbations (LASER field)

Also, some adiabatic (« slow ») changes, like ion-molecule
collisions (or ion-surface interaction)

Induced electronic transitions to excited states !
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Time-dependent Kohn-Sham equation (I)
Started early 80’s :
-Stott and Zaremba, Phys. Rev. A 21, 12 (1980)
-Zangwill and Soven, Phys. Rev. A 21, 1561 (1980)

Computed photoabsorption cross section of atoms σ(ω)

Time-dependent Hartree-Fock already existed
but quite inaccurate !
They generalised LDA ... without a formal justification
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Time-dependent Kohn-Sham equation (II)
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(using atomic units) 

Is this valid ?

LDA equations
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In search of a Time-Dependent Dependent
Density Functional Theory ...

In DFT, we have ... In TD-DFT, what could we have ?
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The Runge-Gross theorems (I)
(E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984))
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is defined by solving the TD Schrödinger equation with a
fixed initial state                       and calculating the
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global TD of the map (not isolated times) ;
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TD function in the potential :
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The Runge-Gross theorems (II)
For a fixed initial state,
and a given TD density,  

The wavefunction            can be determined, within a TD
phase factor

!(t
0
) = !0

Note :   the phase factor comes from the overall additive 
TD function in the potential                      ;
no problem of degeneracy (but the initial WF is known)
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The Runge-Gross theorems (III)
The quantum-mechanical action,

A !,"0,v[ ] = dt
t0

t1# " ![ ](t) i
$
$t

% T̂% v(t)% Ŵ " ![ ](t)

is a functional of the TD density between the initial
and final times (the phase factor C(t) cancels out) and
of the initial wavefunction. It is stationary at the 
TD density corresponding to the TD potential.
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The Runge-Gross theorems (IV)
Now we introduce, in the Kohn-Sham spirit, the possibility
to compare the behaviour of density functionals for electrons
interacting with the physical Coulomb interaction, and for
non-interaction electrons. This leads to the TD 
exchange-correlation action, a functional of the TD density
and the initial wavefunction.

! Axc ",#0[ ]

Exact framework :
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Approximate XC action and TD potential (I)

Formally, the action (and TD potential) is defined for
an interval of times, and, at initial time, depends on the
full many-body wavefunction

Approximation 1 : at initial time, we choose the ground-state,
and thus, can start with the usual XC potential, a functional
of the density at that initial time

Axc !,"0[ ]
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Approximate XC action and TD potential (II)

A
xc

![ ]
 

vxc ![ ](
!
r,t) =

"A

"!(
!
r,t)

There is still a causal « non-local » time-dependence, 
as the action and XC potential at time t depends (in principle) 
on the GS density, and on the TD density
between initial time and present time : this is a memory effect.

Approximation 2 : suppress the memory effect !
Adiabatic approximation => left with only usual spatial
non-locality (leading to LDA, GGA, etc )
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Approximate XC action and TD potential (III)

Beyond adiabatic approximation : active research field
Sum rules / constraints exist 
The adiabatic approximation fulfills many of them
 (compare with LDA !)

Hydrodynamic formulation of TDDFT => Current DFT
Add spin also ...

Combine corrected -1/r XC potential with simple
TD behaviour
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Implementations

1) Treatment in real time domain

2) Treatment in frequency domain

Linear and non-linear response : frequency dependent
susceptibilities

Direct computation of the excitation energies

K. Yabana and G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)
M. Marques et al, Comput. Physics Commun. 151, 60 (2002)

OCTOPUS : also GPL, we share the Nanoquanta lib XC
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The Nitrogen molecule under intense laser (I)
from the Octopus code,  http://www.tddft.org/td-elf/ 
and T. Burnus, M. Marques, and E.K.U. Gross.Phys. Rev. A 71, 10501 (2005) 

LASER Excitation fields : right-hand side is 5 times bigger than left-hand side 
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The Nitrogen molecule under intense laser (II)

Dipole moment : on the right figure, observe the non-linearities seen
as higher frequency Fourier components
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The Nitrogen molecule under intense laser (III)

Total energy of the system : compare the different scales
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Linear response

Consider some system in its GS, and apply a small
TD perturbation characterized by some frequency. 
Watch the density change.
In the linear regime, the associated Fourier components
are related by the frequency-dependent susceptibility
or density-density response function

This susceptibility can be computed within TD-DFT, 
for a given choice of TD-XC functional 
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The TD Hartree and XC kernels

A change of the external potential induces a change of density,
that induces a change of Hartree and XC potential.
For the Hartree potential, we have :

Supposing that the TD XC functional is known, we
have an explicit expression for the change, in term of
the TD XC kernel  
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 XC kernels : local / adiabatic approximation

Combining local approximation and adiabatic
approximation, the expression of the 
TD XC kernel is particularly simple. It is independent
of the frequency (local in time), local in space, and
is determined by a local XC energy density, 
a function of the local unperturbed density.   
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Note : It might be that the local XC energy density is 
the ground state one, but this is not mandatory.
Example : LB94 / ALDA    
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The independent-particle susceptibility
The TD external, Hartree, and XC changes of potential
combine to give a total change of Kohn-Sham potential
seen by independent electrons :
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Adler and Wiser have given an explicit expression for
in terms of the one-particle occupied and 

unoccupied eigenfunctions, and eigenenergies

The change of density due to this potential can be computed
from the independent-particle susceptibility
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The Dyson equation for the susceptibility (I)
One combines these equations or their inverse (assuming they can be inverted) :
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The Dyson equation for the susceptibility (I)
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This is an exact formula for the inverse of the susceptibility

Exact XC kernel, 
to be approximated
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The latter is an exact expression for the independent-particle 
susceptibility, if the exact KS eigenenergies and eigenfunctions 
(occ/unocc) are known. In practice these must be approximated.
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Photoabsorption cross section
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For a finite system, the polarizability tensor is given by

and the photoabsorption cross section corresponds to its
imaginary part, with suitable coefficients
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Independently of the TDDFT formulation of the susceptibility,
it is known (in the many-body theory), that the systems can
absorb energy at the frequencies corresponding to transitions
to excited states, and that the polarizability can be formulated
as a sum over states of the many-body system.
This is the basis of the Casida technique to find excitation
energies.
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Casida’s approach to excitation energies (I)
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For a finite system, the polarizability must be given by

where the I index labels different excited states,
are the corresponding excitation energy and oscillator strength.
After some non-trivial mathematics, for adiabatic XC kernels,
Casida (1995) deduced that the square of the excitation energies 
were all eigenvalues of a specific matrix equation
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while the oscillator strengths could be deduced from 
the eigenvectors          of the same equation.F
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Casida’s approach to excitation energies (II)
This matrix      is defined in the space of electron-hole 
excitations, namely, products of one occupied and one 
unoccupied wavefunction. 
One line (or one row) of the matrix is a composite 
index, i.e. kl (k unoccupied and l occupied) , 
associated to energy change 
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Casida’s approach to excitation energies (III)
(1) Until now, no change of spin was considered : the computed
excitation energies correspond to spin-singlet excited states. 
This formalism can be trivially extended to spin-flipping
TD potentials, and give access also to spin-triplet excited states.

(2) Knowing the excitation energies allows to compute 
Born-Oppenheimer hypersurfaces for excited states, as

E
I
R{ } = EGS R{ }+!I R{ }

(3) Casida’s formalism allows to identify well-separated 
excitation eigenenergies. OK for finite systems, not for
bulk, periodic chains or slabs. 
More fundamentally, kernels based on LDA/GGA are
unable to modify band edges within TDDFT, they are
only able to shift oscillator strength.
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Implementation of Casida’s formalism (I)

Restricted to finite systems :
- big supercell
- nkpt=1
Restricted to spin-unpolarized ground-state + no spinor
- nsppol=1
- nspinor=1

Ground State SCF 
(with occupied bands)

Non-SCF calculation 
(with many bands)
+TDDFT

iscf=-1

First dataset Second dataset
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Implementation of Casida’s formalism (II)

If you need the dynamical polarisability, you need
to give the supercell a « box center », so that there 
is vacuum at the discontinuity of the r potential.

The spectrum is to be produced by yourself, on the basis
of excitation energies and oscillator strength

(old utility, not maintained : ~ABINIT/Utilities/dynamic_pol.f)

Parallelism present (although not properly documented). 
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Nitrogen molecule : tight-binding analysis
Diagram of molecular orbitals

2pz     2px      2py
 σ                π                 π

πuy

σ*u

σg

π*gx π*gy

πux 2px     2py     2pz
 π                π                σ

Atom AtomDiatomic molecule

• •

•
• •

•

However, due to repulsion with the lower lying states,
generated by the 2s orbitals, the      orbital is pushed 
above the              orbitals, and the           is also repelled.  

σg

πu σ*u
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Nitrogen molecule : Kohn-Sham energies

πuy

σg

σg

π*gx π*gy

πux

• •

• • • •

σg

•

•

σ*u

•

•

2p

2s

KS energies lowest KS transitions

8.46 eV

9.36 eV

9.91 eV

10.81 eV

-27.11 eV

-12.18 eV

-10.41 eV

-8.96 eV

-0.50 eV

 0.40 eV

!g

!
u

!g

2!
u
+ "

u

 (from the tutorial : non-converged values)
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Nitrogen molecule : TDDFT

8.46 eV

9.36 eV

9.91 eV

10.81 eV

!g

!
u

!g

2!
u
+ "

u

Kohn-Sham TDDFT
triplet

TDDFT
singlet

7.85 eV 9.47 eV

9.16 eV 9.86 eV

8.16 eV 9.91 eV!
u

!
u

!
u

9.08 eV

(ionized)

9.91 eV

10.46 eV

(ionized)

10.79 eV

 (from the tutorial : non-converged values)
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Discussion

TDDFT  formalism well-established
Approximations : adiabatic OK ;

 beyond is still an active research area
In the Casida formalism, need good starting XC potential

and XC kernel
Powerful for finite systems
Accuracy : might be as good as 0.1 eV, but as bad as 1 eV.
Not useful (at present) for bulk solids, surfaces and chains.


