Non colinear magnetism

(G. Zérah)

June 9, 2017

1 Notations and theoretical considerations

* We will denote the spinor by $\Psi^{\alpha \beta}, \alpha, \beta$ being the two spin indexes.
* The magnetic properties are well represented by introducing the spin density matrix: $\rho^{\alpha, \beta}(r)=\sum_{n} f_{n}\left\langle r \mid \Psi_{n}^{\alpha}\right\rangle\left\langle\Psi_{n}^{\beta} \mid r\right\rangle$ where the sum runs over all states and f_{n} is the occupation of state n.
* With $\rho^{\alpha, \beta}(r)$, we can express the scalar density by $\rho(r)=\sum_{\alpha, \alpha} \rho^{\alpha, \alpha}(r)$ and the magnetization density $\vec{m}(r)$ (in units of $\hbar / 2$) whose components are $m_{i}(r)=\sum_{\alpha, \beta} \rho^{\alpha, \beta}(r) \sigma_{i}^{\alpha, \beta}$, where the σ_{i} are the Pauli matrices.
* In general, $E_{x c}$ is a functional of $\rho^{\alpha, \beta}(r)$, or equivalently of $\vec{m}(r)$ and $\rho(r)$. It is therefore denoted as $E_{x c}(n(r), \vec{m}(r))$
* The expression of $V_{x c}$ taking into account the above expression of $E_{x c}$ is:

$$
V_{x c}^{\alpha, \beta}(r)=\frac{\delta E_{x c}}{\delta \rho(r)} \operatorname{delta}_{\alpha, \beta}+\sum_{i=1}^{3} \frac{\delta E_{x c}}{\delta m_{i}(r)} \sigma_{i}^{\alpha, \beta}
$$

* In the LDA approximation, due to its rotational invariance, $E_{x c}$ is indeed a functional of $n(r)$ and $|m(r)|$ only. In the GGA approximation, we assume that it is a functional of $n(r)$ and $|m(r)|$ and their gradients. (This is not the most general functional of $\vec{m}(r)$ dependent upon first order derivatives, and rotationally invariant.) We therefore use exactly the same functional as in the spin polarized situation, using the local direction of $\vec{m}(r)$ as polarization direction. We the have $\frac{\delta E_{x_{c}}}{\delta m_{i}(r)}=\frac{\delta E_{x} c}{\delta\left\{m_{i}(r)\right.} \widehat{m(r)}$, where $\widehat{m(r)}=\frac{m(r)}{\mid m(r)}$. Now, in the LDA-GGA formulations, $n \uparrow+n \downarrow=n$ and $|n \uparrow-n \downarrow|=|m|$ and therefore, if we set $n \uparrow=(n+m) / 2$ and $n \downarrow=(n-n \uparrow)$, we have:

$$
\frac{\delta E_{x c}}{\delta \rho(r)}=\frac{1}{2}\left(\frac{\delta E_{x c}}{\delta n \uparrow(r)}+\frac{\delta E_{x c}}{\delta n \downarrow(r)}\right)
$$

and

$$
\frac{\delta E_{x c}}{\delta|m(r)|}=\frac{1}{2}\left(\frac{\delta E_{x c}}{\delta n \uparrow(r)}-\frac{\delta E_{x c}}{\delta n \downarrow(r)}\right)
$$

This makes the connection with the more usual spin polarized case.

* Expression of $V_{x c}$ in LDA-GGA

$$
V_{x c}(r)=\frac{\delta E_{x c}}{\delta \rho(r)} \delta_{\alpha, \beta}+\frac{\delta E_{x c}}{\delta|m(r)|} \widehat{m}(r) \cdot \sigma
$$

* Implementation
* Computation of $\rho^{\alpha, \beta}(r)=\sum_{n} f_{n}<r\left|\Psi^{\alpha}><\Psi^{\beta}\right| r>$ One would like to use the routine mkrho.f which does precisely this. But this routine transforms only real quantities, whereas $\rho^{\alpha, \beta}(r)$ is hermitian and can have complex elements. The "trick" is to use only the real quantities:

$$
\begin{aligned}
\rho^{1,1}(r) & =\sum_{n} f_{n}<r \mid \Psi^{1}><\Psi^{1}> \\
\rho^{2,2}(r) & =\sum_{n} f_{n}<r \mid \Psi^{2}><\Psi^{2}> \\
\rho(r)+m_{x}(r) & =\sum_{n} f_{n}\left(\Psi^{1}+\Psi^{2}\right)_{n}^{*}\left(\Psi^{1}+\Psi^{2}\right)_{n} \\
\rho(r)+m_{y}(r) & =\sum_{n} f_{n}\left(\Psi^{1}-i \Psi^{2}\right)_{n}^{*}\left(\Psi^{1}-i \Psi^{2}\right)_{n}
\end{aligned}
$$

and compute $(\rho(r), \vec{m}(r))$ with the help of the aditionnal:

$$
\begin{aligned}
\rho(r) & =\rho^{1,1}(r)+\rho^{2,2}(r) \\
m_{z}(r) & =\rho^{1,1}(r)-\rho^{2,2}(r)
\end{aligned}
$$

Note that only the fourier transform are performed in mkrho.f the final transformation to ($\rho(r), \vec{m}(r)$) is performed in symrhg.f.

* The computation of $V_{x c}$ is performed in rhohxc.f. The only transformation to this routine, is to compute $|\vec{m}(r)|$ as input of the usual (i.e spin polarized) rhohxc.f and yield back the four component $V_{x c}$, from the expression of $\frac{\delta E_{x c}}{\delta|m(r)|}$.
* For more information, see: Hobbs et al., PRB, 62, 11556 ; Perdew et al. PRB, 46, 6671 (for the xc functional)

