Non colinear magnetism

(G. Zérah)

June 9, 2017

1 Notations and theoretical considerations

* We will denote the spinor by $\Psi^{\alpha\beta}$, α, β being the two spin indexes.

* The magnetic properties are well represented by introducing the spin density matrix: $\rho^{\alpha,\beta}(r) = \sum_n f_n < r |\Psi_n^{\alpha} > < \Psi_n^{\beta}| r >$ where the sum runs over all states and f_n is the occupation of state n.

* With $\rho^{\alpha,\beta}(r)$, we can express the scalar density by $\rho(r) = \sum_{\alpha,\alpha} \rho^{\alpha,\alpha}(r)$ and the magnetization density $\vec{m}(r)$ (in units of $\hbar/2$) whose components are $m_i(r) = \sum_{\alpha,\beta} \rho^{\alpha,\beta}(r) \sigma_i^{\alpha,\beta}$, where the σ_i are the Pauli matrices.

* In general, E_{xc} is a functional of $\rho^{\alpha,\beta}(r)$, or equivalently of $\vec{m}(r)$ and $\rho(r)$. It is therefore denoted as $E_{xc}(n(r), \vec{m}(r))$

* The expression of V_{xc} taking into account the above expression of E_{xc} is:

$$V_{xc}^{\alpha,\beta}(r) = \frac{\delta E_{xc}}{\delta \rho(r)} delta_{\alpha,\beta} + \sum_{i=1}^{3} \frac{\delta E_{xc}}{\delta m_i(r)} \sigma_i^{\alpha,\beta}$$

* In the LDA approximation, due to its rotational invariance, E_{xc} is indeed a functional of n(r) and |m(r)| only. In the GGA approximation, we assume that it is a functional of n(r) and |m(r)| and their gradients.(This is not the most general functional of $\vec{m}(r)$ dependent upon first order derivatives, and rotationally invariant.) We therefore use exactly the same functional as in the spin polarized situation, using the local direction of $\vec{m}(r)$ as polarization direction. We the have $\frac{\delta E_{xc}}{\delta m_i(r)} = \frac{\delta E_{xc}}{\delta |m_i(r)|} \widehat{m(r)}$, where $\widehat{m(r)} = \frac{m(r)}{|m(r)|}$. Now, in the LDA-GGA formulations, $n \uparrow +n \downarrow = n$ and $|n \uparrow -n \downarrow| = |m|$ and therefore, if we set $n \uparrow = (n+m)/2$ and $n \downarrow = (n-n \uparrow)$, we have:

$$\frac{\delta E_{xc}}{\delta \rho(r)} = \frac{1}{2} \left(\frac{\delta E_{xc}}{\delta n \uparrow (r)} + \frac{\delta E_{xc}}{\delta n \downarrow (r)} \right)$$

$$\frac{\delta E_{xc}}{\delta |m(r)|} = \frac{1}{2} \left(\frac{\delta E_{xc}}{\delta n \uparrow (r)} - \frac{\delta E_{xc}}{\delta n \downarrow (r)} \right)$$

This makes the connection with the more usual spin polarized case.

* Expression of V_{xc} in LDA-GGA

$$V_{xc}(r) = \frac{\delta E_{xc}}{\delta \rho(r)} \delta_{\alpha,\beta} + \frac{\delta E_{xc}}{\delta |m(r)|} \widehat{m}(r).\sigma$$

* Implementation

f

* Computation of $\rho^{\alpha,\beta}(r) = \sum_n f_n < r | \Psi^{\alpha} > < \Psi^{\beta} | r >$ One would like to use the routine mkrho.f which does precisely this. But this routine transforms only real quantities, whereas $\rho^{\alpha,\beta}(r)$ is hermitian and can have complex elements. The "trick" is to use only the real quantities:

$$\rho^{1,1}(r) = \sum_{n} f_n < r | \Psi^1 > < \Psi^1 >$$

$$\rho^{2,2}(r) = \sum_{n} f_n < r | \Psi^2 > < \Psi^2 >$$

$$\rho(r) + m_x(r) = \sum_{n} f_n (\Psi^1 + \Psi^2)_n^* (\Psi^1 + \Psi^2)_n$$

$$\rho(r) + m_y(r) = \sum_{n} f_n (\Psi^1 - i\Psi^2)_n^* (\Psi^1 - i\Psi^2)_n$$

and compute $(\rho(r), \vec{m}(r))$ with the help of the aditionnal:

$$\rho(r) = \rho^{1,1}(r) + \rho^{2,2}(r)$$

$$m_z(r) = \rho^{1,1}(r) - \rho^{2,2}(r)$$

Note that only the fourier transform are performed in mkrho.f the final transformation to $(\rho(r), \vec{m}(r))$ is performed in symrhg.f.

* The computation of V_{xc} is performed in **rhohxc.f**. The only transformation to this routine, is to compute $|\vec{m}(r)|$ as input of the usual (i.e spin polarized) **rhohxc.f** and yield back the four component V_{xc} , from the expression of $\frac{\delta E_{xc}}{\delta |m(r)|}$.

* For more information, see: Hobbs et al., PRB, 62, 11556 ; Perdew et al. PRB, 46, 6671 (for the xc functional)

and