Geometric considerations

(X. Gonze, Y. Suzukawa, M. Mikami)

June 9, 2017

1 Real space

* The three primitive translation vectors are \mathbf{R}_{1p} , \mathbf{R}_{2p} , \mathbf{R}_{3p} . Representation in Cartesian coordinates (atomic units):

$$\begin{split} \mathbf{R}_{1p} &\rightarrow \texttt{rprimd}(1:3,1) \\ \mathbf{R}_{2p} &\rightarrow \texttt{rprimd}(1:3,2) \\ \mathbf{R}_{3p} &\rightarrow \texttt{rprimd}(1:3,3) \end{split}$$

Related input variables : acell,rprim,angdeg

* Atomic positions are specified by the coordinates \mathbf{x}_{τ} for $\tau = 1 \dots N_{atom}$ where N_{atom} is the member of atoms.

Representation in reduced coordinates

$$\begin{array}{lll} \mathbf{x}_{\tau} &=& x_{1\tau}^{red} \cdot \mathbf{R}_{1p} + x_{2\tau}^{red} \cdot \mathbf{R}_{2p} + x_{3\tau}^{red} \cdot \mathbf{R}_{3p} \\ \tau &\to & \texttt{iatom} \\ N_{atom} &\to & \texttt{natom} \\ x_{1\tau}^{red} &\to & \texttt{xred}(1,\texttt{iatom}) \\ x_{2\tau}^{red} &\to & \texttt{xred}(2,\texttt{iatom}) \\ x_{3\tau}^{red} &\to & \texttt{xred}(3,\texttt{iatom}) \end{array}$$

Related input variables : xangst,xcart,xred

* The volume of the primitive unit cell is

$$\begin{array}{lll} \Omega_{O\mathbf{r}} & = & \mathbf{R}_1 \cdot (\mathbf{R}_2 \times \mathbf{R}_3) \\ \Omega_{O\mathbf{r}} & \to & \mathsf{ucvol}\left(\mathsf{unit\ cell\ volume}\right) \end{array}$$

Computed in metric.f

* The scalar products in the reduced representation are valuated thanks to

$$\mathbf{r} \cdot \mathbf{r}' = \begin{pmatrix} r_1^{red} & r_2^{red} & r_1^{red} \end{pmatrix} \begin{pmatrix} \mathbf{R}_{1p} \cdot \mathbf{R}_{1p} & \mathbf{R}_{1p} \cdot \mathbf{R}_{2p} & \mathbf{R}_{1p} \cdot \mathbf{R}_{3p} \\ \mathbf{R}_{2p} \cdot \mathbf{R}_{1p} & \mathbf{R}_{2p} \cdot \mathbf{R}_{2p} & \mathbf{R}_{2p} \cdot \mathbf{R}_{3p} \\ \mathbf{R}_{3p} \cdot \mathbf{R}_{1p} & \mathbf{R}_{3p} \cdot \mathbf{R}_{2p} & \mathbf{R}_{3p} \cdot \mathbf{R}_{3p} \end{pmatrix} \begin{pmatrix} r_1^{red\prime} \\ r_2^{red\prime} \\ r_3^{red\prime} \end{pmatrix}$$

that is $\mathbf{r} \cdot \mathbf{r}' = \sum_{ij} r_i^{red} \mathbf{R}_{ij}^{met} r_j^{red'}$ where \mathbf{R}_{ij}^{met} is the metric tensor in real space :

$$\mathbf{R}_{ij}^{met} \to \texttt{rmet}(\texttt{i},\texttt{j})$$

Computed in metric.f.

$\mathbf{2}$ **Reciprocal space**

* The three primitive translation vectors in reciprocal space are $\mathbf{G}_{1p}, \mathbf{G}_{2p}, \mathbf{G}_{3p}$ (computed in metric.f)

$$\begin{split} \mathbf{G}_{1p} &= \frac{1}{\Omega_{O\mathbf{r}}}(\mathbf{R}_{2p}\times\mathbf{R}_{3p}) \rightarrow \texttt{gprimd}(1:3,1) \\ \mathbf{G}_{2p} &= \frac{1}{\Omega_{O\mathbf{r}}}(\mathbf{R}_{3p}\times\mathbf{R}_{1p}) \rightarrow \texttt{gprimd}(1:3,2) \\ \mathbf{G}_{3p} &= \frac{1}{\Omega_{O\mathbf{r}}}(\mathbf{R}_{1p}\times\mathbf{R}_{2p}) \rightarrow \texttt{gprimd}(1:3,3) \end{split}$$

This definition is such that $\mathbf{G}_{ip} \cdot \mathbf{R}_{jp} = \delta_{ij}$

[WARNING: often, a factor of 2π is present in definition of \mathbf{G}_{ip} , but not here, for historical reasons.]

* Reduced representation of vectors (K) in reciprocal space $\mathbf{K} = K_1^{red} \mathbf{G}_{1p} + K_2^{red} \mathbf{G}_{2p} + K_3^{red} \mathbf{G}_{3p}^{red} \to (K_1^{red}, K_2^{red}, K_3^{red})$ e.g. the reduced representation of \mathbf{G}_{1p} is (1,0,0).

* The reduced representation of the vectors of the reciprocal space lattice is made of triplets of integers.

*The scalar products in the reduced representation are evaluated thanks to

$$\mathbf{K} \cdot \mathbf{K}' = \begin{pmatrix} K_1^{red} & K_2^{red} & K_1^{red} \end{pmatrix} \begin{pmatrix} \mathbf{G}_{1p} \cdot \mathbf{G}_{1p} & \mathbf{G}_{1p} \cdot \mathbf{G}_{2p} & \mathbf{G}_{1p} \cdot \mathbf{G}_{3p} \\ \mathbf{G}_{2p} \cdot \mathbf{G}_{1p} & \mathbf{G}_{2p} \cdot \mathbf{G}_{2p} & \mathbf{G}_{2p} \cdot \mathbf{G}_{3p} \\ \mathbf{G}_{3p} \cdot \mathbf{G}_{1p} & \mathbf{G}_{3p} \cdot \mathbf{G}_{2p} & \mathbf{G}_{3p} \cdot \mathbf{G}_{3p} \end{pmatrix} \begin{pmatrix} K_1^{red'} \\ K_2^{red'} \\ K_3^{red'} \end{pmatrix}$$

that is $\mathbf{K} \cdot \mathbf{K}' = \sum_{ij} K_i^{red} \mathbf{G}_{ij}^{met} K_j^{red'}$ where \mathbf{G}_{ij}^{met} is the metric tensor in reciprocal space :

$$\mathbf{G}_{ij}^{met}
ightarrow \mathtt{gmet}(\mathtt{i},\mathtt{j})$$

(computed in metric.f).

3 Symmetries

* A symmetry operation in real space sends the point \mathbf{r} to the point $\mathbf{r}' = \mathbf{S}_{\mathbf{t}} \{\mathbf{r}\}$ whose coordinates are $(\mathbf{r}')_{\alpha} = \sum_{\beta} S_{\alpha\beta} r_{\beta} + t_{\alpha}$ (Cartesian coordinates).

* The symmetry operations that preserves the crystalline structure are those that send every atom location on an atom location with the same atomic type.

* The application of a symmetry operation to a function of spatial coordinates ${\bf V}$ is such that :

$$(\mathbf{S}_{\mathbf{t}}\mathbf{V})(\mathbf{r}) = \mathbf{V}((\mathbf{S}_{\mathbf{t}})^{-1}\{\mathbf{r}\}$$
$$(\mathbf{S}_{\mathbf{t}})^{-1}\{\mathbf{r}\} = \sum_{\beta} S_{\alpha\beta}^{-1}(r_{\beta} - t_{\beta})$$

* For each symmetry operation, $isym = 1 \dots nsym$, the 3×3 **S**^{red} matrix is stored in symmel(:,:,isym).

stored in symrel(:,:,isym). [in reduced coordinates : $r_{\alpha}^{\prime red} = \sum_{\beta} S_{\alpha\beta}^{red} r_{\beta}^{red} + t_{\beta}^{red}$] and the vector \mathbf{t}^{red} is stored in those (:,isym).

* The conversion between reduced coordinates and Cartesian coordinates is $r'_{\gamma} = \sum_{\alpha\beta} (R_{\alpha p})_{\gamma} [S^{red}_{\alpha\beta} r^{red}_{\beta} + t^{red}_{\alpha}]$ with [as $G_{ip} \cdot R_{jp} = \delta_{ij}$]

$$r_{\delta} = \sum_{\alpha} (R_{\alpha p})_{\delta} r_{\alpha}^{red} \to \sum_{\beta} (G_{\beta p})_{\delta} r_{\delta} = r_{\beta}^{red}$$

So

$$S_{\gamma\delta} = \sum_{\alpha\beta} (R_{\alpha p})_{\gamma} S^{red}_{\alpha\beta} (G_{\beta p})_{\gamma}$$