Geometric considerations

(X. Gonze, Y. Suzukawa, M. Mikami)

June 9, 2017

1 Real space

${ }^{*}$ The three primitive translation vectors are $\mathbf{R}_{1 p}, \mathbf{R}_{2 p}, \mathbf{R}_{3 p}$. Representation in Cartesian coordinates (atomic units):

$$
\begin{aligned}
& \mathbf{R}_{1 p} \rightarrow \operatorname{rprimd}(1: 3,1) \\
& \mathbf{R}_{2 p} \rightarrow \operatorname{rprimd}(1: 3,2) \\
& \mathbf{R}_{3 p} \rightarrow \operatorname{rprimd}(1: 3,3)
\end{aligned}
$$

Related input variables: acell,rprim,angdeg

* Atomic positions are specified by the coordinates \mathbf{x}_{τ} for $\tau=1 \ldots N_{\text {atom }}$ where $N_{\text {atom }}$ is the member of atoms.

Representation in reduced coordinates

$$
\begin{aligned}
\mathbf{x}_{\tau} & =x_{1 \tau}^{r e d} \cdot \mathbf{R}_{1 p}+x_{2 \tau}^{r e d} \cdot \mathbf{R}_{2 p}+x_{3 \tau}^{r e d} \cdot \mathbf{R}_{3 p} \\
\tau & \rightarrow \text { iatom } \\
N_{\text {atom }} & \rightarrow \text { natom } \\
x_{1 \tau}^{r e d} & \rightarrow \text { xred }(1, \text { iatom }) \\
x_{2 \tau}^{r e d} & \rightarrow \operatorname{xred}(2, \text { iatom }) \\
x_{3 \tau}^{\text {red }} & \rightarrow \operatorname{xred}(3, \text { iatom })
\end{aligned}
$$

Related input variables : xangst,xcart,xred

* The volume of the primitive unit cell is

$$
\begin{aligned}
\Omega_{O \mathbf{r}} & =\mathbf{R}_{1} \cdot\left(\mathbf{R}_{2} \times \mathbf{R}_{3}\right) \\
\Omega_{O \mathbf{r}} & \rightarrow \text { ucvol (unit cell volume) }
\end{aligned}
$$

Computed in metric.f

* The scalar products in the reduced representation are valuated thanks to

$$
\mathbf{r} \cdot \mathbf{r}^{\prime}=\left(\begin{array}{lll}
r_{1}^{\text {red }} & r_{2}^{\text {red }} & r_{1}^{\text {red }}
\end{array}\right)\left(\begin{array}{lll}
\mathbf{R}_{1 p} \cdot \mathbf{R}_{1 p} & \mathbf{R}_{1 p} \cdot \mathbf{R}_{2 p} & \mathbf{R}_{1 p} \cdot \mathbf{R}_{3 p} \\
\mathbf{R}_{2 p} \cdot \mathbf{R}_{1 p} & \mathbf{R}_{2 p} \cdot \mathbf{R}_{2 p} & \mathbf{R}_{2 p} \cdot \mathbf{R}_{3 p} \\
\mathbf{R}_{3 p} \cdot \mathbf{R}_{1 p} & \mathbf{R}_{3 p} \cdot \mathbf{R}_{2 p} & \mathbf{R}_{3 p} \cdot \mathbf{R}_{3 p}
\end{array}\right)\left(\begin{array}{c}
r_{1}^{\text {red } \prime} \\
r_{2}^{\text {red }} \\
r_{3}^{\text {red } \prime}
\end{array}\right)
$$

that is $\mathbf{r} \cdot \mathbf{r}^{\prime}=\sum_{i j} r_{i}^{r e d} \mathbf{R}_{i j}^{m e t} r_{j}^{r e d} \prime$
where $\mathbf{R}_{i j}^{m e t}$ is the metric tensor in real space:

$$
\mathbf{R}_{i j}^{m e t} \rightarrow \operatorname{rmet}(\mathrm{i}, \mathrm{j})
$$

Computed in metric.f.

2 Reciprocal space

* The three primitive translation vectors in reciprocal space are $\mathbf{G}_{1 p}, \mathbf{G}_{2 p}, \mathbf{G}_{3 p}$ (computed in metric.f)

$$
\begin{aligned}
\mathbf{G}_{1 p} & =\frac{1}{\Omega_{O \mathbf{r}}}\left(\mathbf{R}_{2 p} \times \mathbf{R}_{3 p}\right) \rightarrow \operatorname{gprimd}(1: 3,1) \\
\mathbf{G}_{2 p} & =\frac{1}{\Omega_{O \mathbf{r}}}\left(\mathbf{R}_{3 p} \times \mathbf{R}_{1 p}\right) \rightarrow \operatorname{gprimd}(1: 3,2) \\
\mathbf{G}_{3 p} & =\frac{1}{\Omega_{O \mathbf{r}}}\left(\mathbf{R}_{1 p} \times \mathbf{R}_{2 p}\right) \rightarrow \operatorname{gprimd}(1: 3,3)
\end{aligned}
$$

This definition is such that $\mathbf{G}_{i p} \cdot \mathbf{R}_{j p}=\delta_{i j}$
[WARNING: often, a factor of 2π is present in definition of $\mathbf{G}_{i p}$, but not here, for historical reasons.]

* Reduced representation of vectors (K) in reciprocal space
$\mathbf{K}=K_{1}^{\text {red }} \mathbf{G}_{1 p}+K_{2}^{\text {red }} \mathbf{G}_{2 p}+K_{3}^{\text {red }} \mathbf{G}_{3 p}^{\text {red }} \rightarrow\left(K_{1}^{\text {red }}, K_{2}^{\text {red }}, K_{3}^{\text {red }}\right)$
e.g. the reduced representation of $\mathbf{G}_{1 p}$ is $(1,0,0)$.
* The reduced representation of the vectors of the reciprocal space lattice is made of triplets of integers.
*The scalar products in the reduced representation are evaluated thanks to $\mathbf{K} \cdot \mathbf{K}^{\prime}=\left(\begin{array}{lll}K_{1}^{\text {red }} & K_{2}^{\text {red }} & K_{1}^{\text {red }}\end{array}\right)\left(\begin{array}{lll}\mathbf{G}_{1 p} \cdot \mathbf{G}_{1 p} & \mathbf{G}_{1 p} \cdot \mathbf{G}_{2 p} & \mathbf{G}_{1 p} \cdot \mathbf{G}_{3 p} \\ \mathbf{G}_{2 p} \cdot \mathbf{G}_{1 p} & \mathbf{G}_{2 p} \cdot \mathbf{G}_{2 p} & \mathbf{G}_{2 p} \cdot \mathbf{G}_{3 p} \\ \mathbf{G}_{3 p} \cdot \mathbf{G}_{1 p} & \mathbf{G}_{3 p} \cdot \mathbf{G}_{2 p} & \mathbf{G}_{3 p} \cdot \mathbf{G}_{3 p}\end{array}\right)\left(\begin{array}{c}K_{1}^{\text {red }} \\ K_{2}^{\text {red }} \\ K_{3}^{\text {red } \prime}\end{array}\right)$
that is $\mathbf{K} \cdot \mathbf{K}^{\prime}=\sum_{i j} K_{i}^{\text {red }} \mathbf{G}_{i j}^{m e t} K_{j}^{\text {red }}$
where $\mathbf{G}_{i j}^{m e t}$ is the metric tensor in reciprocal space :

$$
\mathbf{G}_{i j}^{m e t} \rightarrow \operatorname{gmet}(\mathrm{i}, \mathrm{j})
$$

(computed in metric.f).

3 Symmetries

* A symmetry operation in real space sends the point \mathbf{r} to the point $\mathbf{r}^{\prime}=$ $\mathbf{S}_{\mathbf{t}}\{\mathbf{r}\}$ whose coordinates are $\left(\mathbf{r}^{\prime}\right)_{\alpha}=\sum_{\beta} S_{\alpha \beta} r_{\beta}+t_{\alpha}$ (Cartesian coordinates).
* The symmetry operations that preserves the crystalline structure are those that send every atom location on an atom location with the same atomic type.
* The application of a symmetry operation to a function of spatial coordinates \mathbf{V} is such that :

$$
\begin{gathered}
\left(\mathbf{S}_{\mathbf{t}} \mathbf{V}\right)(\mathbf{r})=\mathbf{V}\left(\left(\mathbf{S}_{\mathbf{t}}\right)^{-1}\{\mathbf{r}\}\right. \\
\left(\mathbf{S}_{\mathbf{t}}\right)^{-1}\{\mathbf{r}\}=\sum_{\beta} S_{\alpha \beta}^{-1}\left(r_{\beta}-t_{\beta}\right)
\end{gathered}
$$

* For each symmetry operation, $i s y m=1 \ldots n s y m$, the $3 \times 3 \mathbf{S}^{r e d}$ matrix is stored in symrel(:,:,isym).
[in reduced coordinates : $r_{\alpha}^{\prime r e d}=\sum_{\beta} S_{\alpha \beta}^{r e d} r_{\beta}^{r e d}+t_{\beta}^{\text {red }}$]
and the vector $\mathbf{t}^{\text {red }}$ is stored in tnons (: ,isym).
* The conversion between reduced coordinates and Cartesian coordinates is $r_{\gamma}^{\prime}=\sum_{\alpha \beta}\left(R_{\alpha p}\right)_{\gamma}\left[S_{\alpha \beta}^{r e d} r_{\beta}^{r e d}+t_{\alpha}^{r e d}\right]$
with [as $G_{i p} \cdot R_{j p}=\delta_{i j}$]

$$
r_{\delta}=\sum_{\alpha}\left(R_{\alpha p}\right)_{\delta} r_{\alpha}^{r e d} \rightarrow \sum_{\beta}\left(G_{\beta p}\right)_{\delta} r_{\delta}=r_{\beta}^{r e d}
$$

So

$$
S_{\gamma \delta}=\sum_{\alpha \beta}\left(R_{\alpha p}\right)_{\gamma} S_{\alpha \beta}^{r e d}\left(G_{\beta p}\right)_{\gamma}
$$

